Extensions 1→N→G→Q→1 with N=C4○D8 and Q=S3

Direct product G=N×Q with N=C4○D8 and Q=S3
dρLabelID
S3×C4○D8484S3xC4oD8192,1326

Semidirect products G=N:Q with N=C4○D8 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D81S3 = Q16.D6φ: S3/C3C2 ⊆ Out C4○D8964C4oD8:1S3192,753
C4○D82S3 = Q16⋊D6φ: S3/C3C2 ⊆ Out C4○D8484+C4oD8:2S3192,752
C4○D83S3 = SD16⋊D6φ: S3/C3C2 ⊆ Out C4○D8484C4oD8:3S3192,1327
C4○D84S3 = D815D6φ: S3/C3C2 ⊆ Out C4○D8484+C4oD8:4S3192,1328
C4○D85S3 = D811D6φ: S3/C3C2 ⊆ Out C4○D8484C4oD8:5S3192,1329
C4○D86S3 = D8.10D6φ: S3/C3C2 ⊆ Out C4○D8964-C4oD8:6S3192,1330

Non-split extensions G=N.Q with N=C4○D8 and Q=S3
extensionφ:Q→Out NdρLabelID
C4○D8.1S3 = C24.41D4φ: S3/C3C2 ⊆ Out C4○D8964C4oD8.1S3192,126
C4○D8.2S3 = D82Dic3φ: S3/C3C2 ⊆ Out C4○D8484C4oD8.2S3192,125
C4○D8.3S3 = D8.9D6φ: S3/C3C2 ⊆ Out C4○D8964-C4oD8.3S3192,754
C4○D8.4S3 = D84Dic3φ: S3/C3C2 ⊆ Out C4○D8484C4oD8.4S3192,756
C4○D8.5S3 = D85Dic3φ: trivial image484C4oD8.5S3192,755

׿
×
𝔽