Copied to
clipboard

G = S3xC4oD8order 192 = 26·3

Direct product of S3 and C4oD8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xC4oD8, D8:14D6, Q16:12D6, SD16:14D6, D24:18C22, C12.14C24, C24.45C23, D12.9C23, Dic6.9C23, Dic12:16C22, (S3xD8):8C2, (C2xC8):27D6, C4oD24:6C2, C4oD4:10D6, (S3xQ16):8C2, D8:3S3:8C2, (C2xC24):4C22, (S3xSD16):7C2, (C4xS3).54D4, D6.66(C2xD4), C4.221(S3xD4), C3:C8.24C23, D24:C2:8C2, C22.4(S3xD4), (S3xC8):16C22, D4:S3:12C22, Q8.13D6:1C2, Q8.7D6:7C2, C12.380(C2xD4), C4oD12:5C22, (C3xD8):12C22, C8.42(C22xS3), C4.14(S3xC23), D4.8(C22xS3), (S3xD4).6C22, (C3xD4).8C23, C24:C2:20C22, (C3xQ8).8C23, (S3xQ8).5C22, D4:2S3:8C22, (C4xS3).29C23, D4.S3:11C22, Dic3.71(C2xD4), (C3xQ16):10C22, Q8:3S3:8C22, C3:Q16:10C22, (C22xS3).64D4, C6.115(C22xD4), Q8.18(C22xS3), (C2xC12).531C23, (C2xDic3).124D4, Q8:2S3:11C22, (C3xSD16):15C22, (S3xC2xC8):1C2, C3:5(C2xC4oD8), C2.88(C2xS3xD4), (S3xC4oD4):1C2, (C3xC4oD8):2C2, (C2xC3:C8):37C22, (C2xC6).11(C2xD4), (C3xC4oD4):1C22, (S3xC2xC4).261C22, (C2xC4).618(C22xS3), SmallGroup(192,1326)

Series: Derived Chief Lower central Upper central

C1C12 — S3xC4oD8
C1C3C6C12C4xS3S3xC2xC4S3xC4oD4 — S3xC4oD8
C3C6C12 — S3xC4oD8
C1C4C2xC4C4oD8

Generators and relations for S3xC4oD8
 G = < a,b,c,d,e | a3=b2=c4=e2=1, d4=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d3 >

Subgroups: 712 in 266 conjugacy classes, 101 normal (51 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC8, C2xC8, D8, D8, SD16, SD16, Q16, Q16, C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, C3:C8, C24, Dic6, Dic6, C4xS3, C4xS3, D12, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xS3, C22xC8, C2xD8, C2xSD16, C2xQ16, C4oD8, C4oD8, C2xC4oD4, S3xC8, C24:C2, D24, Dic12, C2xC3:C8, D4:S3, D4.S3, Q8:2S3, C3:Q16, C2xC24, C3xD8, C3xSD16, C3xQ16, S3xC2xC4, S3xC2xC4, C4oD12, C4oD12, S3xD4, S3xD4, D4:2S3, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, C2xC4oD8, S3xC2xC8, C4oD24, S3xD8, D8:3S3, S3xSD16, Q8.7D6, S3xQ16, D24:C2, Q8.13D6, C3xC4oD8, S3xC4oD4, S3xC4oD8
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C4oD8, C22xD4, S3xD4, S3xC23, C2xC4oD8, C2xS3xD4, S3xC4oD8

Smallest permutation representation of S3xC4oD8
On 48 points
Generators in S48
(1 40 27)(2 33 28)(3 34 29)(4 35 30)(5 36 31)(6 37 32)(7 38 25)(8 39 26)(9 24 45)(10 17 46)(11 18 47)(12 19 48)(13 20 41)(14 21 42)(15 22 43)(16 23 44)
(9 45)(10 46)(11 47)(12 48)(13 41)(14 42)(15 43)(16 44)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)(33 41 37 45)(34 42 38 46)(35 43 39 47)(36 44 40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 21)(18 20)(22 24)(25 29)(26 28)(30 32)(33 39)(34 38)(35 37)(41 47)(42 46)(43 45)

G:=sub<Sym(48)| (1,40,27)(2,33,28)(3,34,29)(4,35,30)(5,36,31)(6,37,32)(7,38,25)(8,39,26)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)>;

G:=Group( (1,40,27)(2,33,28)(3,34,29)(4,35,30)(5,36,31)(6,37,32)(7,38,25)(8,39,26)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45) );

G=PermutationGroup([[(1,40,27),(2,33,28),(3,34,29),(4,35,30),(5,36,31),(6,37,32),(7,38,25),(8,39,26),(9,24,45),(10,17,46),(11,18,47),(12,19,48),(13,20,41),(14,21,42),(15,22,43),(16,23,44)], [(9,45),(10,46),(11,47),(12,48),(13,41),(14,42),(15,43),(16,44),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27),(33,41,37,45),(34,42,38,46),(35,43,39,47),(36,44,40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,21),(18,20),(22,24),(25,29),(26,28),(30,32),(33,39),(34,38),(35,37),(41,47),(42,46),(43,45)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D8A8B8C8D8E8F8G8H12A12B12C12D12E24A24B24C24D
order122222222234444444444666688888888121212121224242424
size1123344612122112334461212248822226666224884444

42 irreducible representations

dim1111111111112222222222444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6C4oD8S3xD4S3xD4S3xC4oD8
kernelS3xC4oD8S3xC2xC8C4oD24S3xD8D8:3S3S3xSD16Q8.7D6S3xQ16D24:C2Q8.13D6C3xC4oD8S3xC4oD4C4oD8C4xS3C2xDic3C22xS3C2xC8D8SD16Q16C4oD4S3C4C22C1
# reps1111122112121211112128114

Matrix representation of S3xC4oD8 in GL4(F73) generated by

1000
0100
007272
0010
,
72000
07200
0010
007272
,
27000
02700
00720
00072
,
165700
161600
00720
00072
,
1000
07200
0010
0001
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,72,1,0,0,72,0],[72,0,0,0,0,72,0,0,0,0,1,72,0,0,0,72],[27,0,0,0,0,27,0,0,0,0,72,0,0,0,0,72],[16,16,0,0,57,16,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1] >;

S3xC4oD8 in GAP, Magma, Sage, TeX

S_3\times C_4\circ D_8
% in TeX

G:=Group("S3xC4oD8");
// GroupNames label

G:=SmallGroup(192,1326);
// by ID

G=gap.SmallGroup(192,1326);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,570,185,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=e^2=1,d^4=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<