Extensions 1→N→G→Q→1 with N=2- 1+4 and Q=S3

Direct product G=N×Q with N=2- 1+4 and Q=S3
dρLabelID
S3×2- 1+4488-S3xES-(2,2)192,1526

Semidirect products G=N:Q with N=2- 1+4 and Q=S3
extensionφ:Q→Out NdρLabelID
2- 1+41S3 = D4.3S4φ: S3/C1S3 ⊆ Out 2- 1+4324ES-(2,2):1S3192,990
2- 1+42S3 = D4.4S4φ: S3/C1S3 ⊆ Out 2- 1+4164ES-(2,2):2S3192,1485
2- 1+43S3 = D4.5S4φ: S3/C1S3 ⊆ Out 2- 1+4324-ES-(2,2):3S3192,1486
2- 1+44S3 = 2- 1+44S3φ: S3/C3C2 ⊆ Out 2- 1+4488+ES-(2,2):4S3192,804
2- 1+45S3 = D12.34C23φ: S3/C3C2 ⊆ Out 2- 1+4488+ES-(2,2):5S3192,1396
2- 1+46S3 = D12.35C23φ: S3/C3C2 ⊆ Out 2- 1+4968-ES-(2,2):6S3192,1397
2- 1+47S3 = D12.39C23φ: trivial image488+ES-(2,2):7S3192,1527

Non-split extensions G=N.Q with N=2- 1+4 and Q=S3
extensionφ:Q→Out NdρLabelID
2- 1+4.S3 = D4.S4φ: S3/C1S3 ⊆ Out 2- 1+4324-ES-(2,2).S3192,989
2- 1+4.2S3 = 2- 1+4.2S3φ: S3/C3C2 ⊆ Out 2- 1+4488-ES-(2,2).2S3192,805

׿
×
𝔽