Copied to
clipboard

G = D4.5S4order 192 = 26·3

2nd non-split extension by D4 of S4 acting through Inn(D4)

non-abelian, soluble

Aliases: D4.5S4, 2- 1+43S3, GL2(𝔽3).C22, CSU2(𝔽3).C22, SL2(𝔽3).9C23, (C2×Q8).D6, C4.15(C2×S4), D4.A43C2, C4○D4.7D6, C4.6S44C2, C4.S45C2, C22.6(C2×S4), C2.20(C22×S4), Q8.D62C2, C4.A4.6C22, Q8.10(C22×S3), (C2×CSU2(𝔽3))⋊6C2, (C2×SL2(𝔽3)).C22, SmallGroup(192,1486)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — D4.5S4
C1C2Q8SL2(𝔽3)GL2(𝔽3)C4.6S4 — D4.5S4
SL2(𝔽3) — D4.5S4
C1C2D4

Generators and relations for D4.5S4
 G = < a,b,c,d,e,f | a4=b2=e3=f2=1, c2=d2=a2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a2b, dcd-1=a2c, ece-1=a2cd, fcf=cd, ede-1=c, fdf=a2d, fef=e-1 >

Subgroups: 471 in 140 conjugacy classes, 27 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, D4, D4, Q8, Q8, Dic3, C12, D6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, SL2(𝔽3), Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C8○D4, C2×Q16, C4○D8, C8.C22, 2- 1+4, 2- 1+4, CSU2(𝔽3), CSU2(𝔽3), GL2(𝔽3), C2×SL2(𝔽3), C4.A4, D42S3, Q8○D8, C2×CSU2(𝔽3), Q8.D6, C4.S4, C4.6S4, D4.A4, D4.5S4
Quotients: C1, C2, C22, S3, C23, D6, S4, C22×S3, C2×S4, C22×S4, D4.5S4

Character table of D4.5S4

 class 12A2B2C2D2E34A4B4C4D4E4F4G6A6B6C8A8B8C8D8E12
 size 112261282666121212816166612121216
ρ111111111111111111111111    trivial
ρ2111-1-111-1-1111-1-111-1-1-1-111-1    linear of order 2
ρ311-1-11111-11-1-1-111-1-111-11-11    linear of order 2
ρ411-11-111-111-1-11-11-11-1-111-1-1    linear of order 2
ρ5111-1-1-11-1-111-11111-1111-1-1-1    linear of order 2
ρ611111-111111-1-1-1111-1-1-1-1-11    linear of order 2
ρ711-11-1-11-111-11-111-1111-1-11-1    linear of order 2
ρ811-1-11-111-11-111-11-1-1-1-11-111    linear of order 2
ρ922-22-20-1-222-2000-11-1000001    orthogonal lifted from D6
ρ10222-2-20-1-2-222000-1-11000001    orthogonal lifted from D6
ρ1122-2-220-12-22-2000-11100000-1    orthogonal lifted from D6
ρ12222220-12222000-1-1-100000-1    orthogonal lifted from S3
ρ1333-33110-3-1-11-11-100011-1-110    orthogonal lifted from C2×S4
ρ1433-3-3-11031-11-1-11000-1-11-110    orthogonal lifted from C2×S4
ρ15333-31-10-31-1-1-111000-1-1-1110    orthogonal lifted from C2×S4
ρ163333-1-103-1-1-1-1-1-1000111110    orthogonal lifted from S4
ρ1733-331-10-3-1-111-11000-1-111-10    orthogonal lifted from C2×S4
ρ1833-3-3-1-1031-1111-100011-11-10    orthogonal lifted from C2×S4
ρ19333-3110-31-1-11-1-1000111-1-10    orthogonal lifted from C2×S4
ρ203333-1103-1-1-1111000-1-1-1-1-10    orthogonal lifted from S4
ρ214-40000-20000000200-22220000    symplectic faithful, Schur index 2
ρ224-40000-2000000020022-220000    symplectic faithful, Schur index 2
ρ238-8000020000000-200000000    symplectic faithful, Schur index 2

Smallest permutation representation of D4.5S4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(5 6)(7 8)(9 10)(11 12)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)(25 26)(27 28)(29 30)(31 32)
(1 8 3 6)(2 5 4 7)(9 24 11 22)(10 21 12 23)(13 19 15 17)(14 20 16 18)(25 29 27 31)(26 30 28 32)
(1 19 3 17)(2 20 4 18)(5 14 7 16)(6 15 8 13)(9 25 11 27)(10 26 12 28)(21 32 23 30)(22 29 24 31)
(5 20 16)(6 17 13)(7 18 14)(8 19 15)(9 24 31)(10 21 32)(11 22 29)(12 23 30)
(1 25)(2 26)(3 27)(4 28)(5 21)(6 22)(7 23)(8 24)(9 19)(10 20)(11 17)(12 18)(13 29)(14 30)(15 31)(16 32)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,26)(27,28)(29,30)(31,32), (1,8,3,6)(2,5,4,7)(9,24,11,22)(10,21,12,23)(13,19,15,17)(14,20,16,18)(25,29,27,31)(26,30,28,32), (1,19,3,17)(2,20,4,18)(5,14,7,16)(6,15,8,13)(9,25,11,27)(10,26,12,28)(21,32,23,30)(22,29,24,31), (5,20,16)(6,17,13)(7,18,14)(8,19,15)(9,24,31)(10,21,32)(11,22,29)(12,23,30), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,26)(27,28)(29,30)(31,32), (1,8,3,6)(2,5,4,7)(9,24,11,22)(10,21,12,23)(13,19,15,17)(14,20,16,18)(25,29,27,31)(26,30,28,32), (1,19,3,17)(2,20,4,18)(5,14,7,16)(6,15,8,13)(9,25,11,27)(10,26,12,28)(21,32,23,30)(22,29,24,31), (5,20,16)(6,17,13)(7,18,14)(8,19,15)(9,24,31)(10,21,32)(11,22,29)(12,23,30), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23),(25,26),(27,28),(29,30),(31,32)], [(1,8,3,6),(2,5,4,7),(9,24,11,22),(10,21,12,23),(13,19,15,17),(14,20,16,18),(25,29,27,31),(26,30,28,32)], [(1,19,3,17),(2,20,4,18),(5,14,7,16),(6,15,8,13),(9,25,11,27),(10,26,12,28),(21,32,23,30),(22,29,24,31)], [(5,20,16),(6,17,13),(7,18,14),(8,19,15),(9,24,31),(10,21,32),(11,22,29),(12,23,30)], [(1,25),(2,26),(3,27),(4,28),(5,21),(6,22),(7,23),(8,24),(9,19),(10,20),(11,17),(12,18),(13,29),(14,30),(15,31),(16,32)]])

Matrix representation of D4.5S4 in GL4(𝔽7) generated by

6205
5043
2543
6644
,
4052
5003
2543
5516
,
6611
2041
3301
4351
,
4065
6011
5524
6141
,
1141
0333
6602
1631
,
6636
6344
6363
5046
G:=sub<GL(4,GF(7))| [6,5,2,6,2,0,5,6,0,4,4,4,5,3,3,4],[4,5,2,5,0,0,5,5,5,0,4,1,2,3,3,6],[6,2,3,4,6,0,3,3,1,4,0,5,1,1,1,1],[4,6,5,6,0,0,5,1,6,1,2,4,5,1,4,1],[1,0,6,1,1,3,6,6,4,3,0,3,1,3,2,1],[6,6,6,5,6,3,3,0,3,4,6,4,6,4,3,6] >;

D4.5S4 in GAP, Magma, Sage, TeX

D_4._5S_4
% in TeX

G:=Group("D4.5S4");
// GroupNames label

G:=SmallGroup(192,1486);
// by ID

G=gap.SmallGroup(192,1486);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,680,2102,1059,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=e^3=f^2=1,c^2=d^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^2*b,d*c*d^-1=a^2*c,e*c*e^-1=a^2*c*d,f*c*f=c*d,e*d*e^-1=c,f*d*f=a^2*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of D4.5S4 in TeX

׿
×
𝔽