Aliases: D4.2S4, U2(𝔽3)⋊3C2, 2- 1+4.S3, SL2(𝔽3).9D4, C4.7(C2×S4), D4.A4.C2, C4○D4.3D6, C4.S4⋊3C2, Q8.6(C3⋊D4), C4.A4.3C22, C2.14(A4⋊D4), SmallGroup(192,989)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.S4
G = < a,b,c,d,e,f | a4=b2=e3=1, c2=d2=f2=a2, bab=faf-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, fbf-1=ab, dcd-1=a2c, ece-1=a2cd, fcf-1=cd, ede-1=c, fdf-1=a2d, fef-1=e-1 >
Subgroups: 277 in 69 conjugacy classes, 13 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C8, C2×C4, D4, D4, Q8, Q8, Dic3, C12, C2×C6, C42, C4⋊C4, M4(2), SD16, Q16, C2×Q8, C4○D4, C4○D4, C3⋊C8, SL2(𝔽3), Dic6, C3×D4, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, D4.S3, CSU2(𝔽3), C2×SL2(𝔽3), C4.A4, D4.10D4, U2(𝔽3), C4.S4, D4.A4, D4.S4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊D4, S4, C2×S4, A4⋊D4, D4.S4
Character table of D4.S4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 12 | |
size | 1 | 1 | 4 | 6 | 8 | 2 | 6 | 12 | 12 | 12 | 24 | 8 | 16 | 16 | 24 | 24 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | -2 | 2 | -1 | 2 | 2 | 0 | 0 | -2 | 0 | -1 | 1 | 1 | 0 | 0 | -1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | √-3 | -√-3 | 0 | 0 | 1 | complex lifted from C3⋊D4 |
ρ9 | 2 | 2 | 0 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -√-3 | √-3 | 0 | 0 | 1 | complex lifted from C3⋊D4 |
ρ10 | 3 | 3 | -3 | -1 | 0 | 3 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | 0 | orthogonal lifted from C2×S4 |
ρ11 | 3 | 3 | -3 | -1 | 0 | 3 | -1 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 1 | 1 | 0 | orthogonal lifted from C2×S4 |
ρ12 | 3 | 3 | 3 | -1 | 0 | 3 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | -1 | 1 | 0 | orthogonal lifted from S4 |
ρ13 | 3 | 3 | 3 | -1 | 0 | 3 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 1 | -1 | 0 | orthogonal lifted from S4 |
ρ14 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ16 | 6 | 6 | 0 | 2 | 0 | -6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
ρ17 | 8 | -8 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 4)(2 3)(5 6)(7 8)(9 11)(13 16)(14 15)(17 18)(19 20)(22 24)(26 28)(29 31)
(1 8 3 6)(2 5 4 7)(9 28 11 26)(10 25 12 27)(13 18 15 20)(14 19 16 17)(21 30 23 32)(22 31 24 29)
(1 18 3 20)(2 19 4 17)(5 14 7 16)(6 15 8 13)(9 24 11 22)(10 21 12 23)(25 32 27 30)(26 29 28 31)
(5 19 16)(6 20 13)(7 17 14)(8 18 15)(9 28 31)(10 25 32)(11 26 29)(12 27 30)
(1 24 3 22)(2 23 4 21)(5 27 7 25)(6 26 8 28)(9 20 11 18)(10 19 12 17)(13 29 15 31)(14 32 16 30)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,11)(13,16)(14,15)(17,18)(19,20)(22,24)(26,28)(29,31), (1,8,3,6)(2,5,4,7)(9,28,11,26)(10,25,12,27)(13,18,15,20)(14,19,16,17)(21,30,23,32)(22,31,24,29), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,24,11,22)(10,21,12,23)(25,32,27,30)(26,29,28,31), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,28,31)(10,25,32)(11,26,29)(12,27,30), (1,24,3,22)(2,23,4,21)(5,27,7,25)(6,26,8,28)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,4)(2,3)(5,6)(7,8)(9,11)(13,16)(14,15)(17,18)(19,20)(22,24)(26,28)(29,31), (1,8,3,6)(2,5,4,7)(9,28,11,26)(10,25,12,27)(13,18,15,20)(14,19,16,17)(21,30,23,32)(22,31,24,29), (1,18,3,20)(2,19,4,17)(5,14,7,16)(6,15,8,13)(9,24,11,22)(10,21,12,23)(25,32,27,30)(26,29,28,31), (5,19,16)(6,20,13)(7,17,14)(8,18,15)(9,28,31)(10,25,32)(11,26,29)(12,27,30), (1,24,3,22)(2,23,4,21)(5,27,7,25)(6,26,8,28)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,4),(2,3),(5,6),(7,8),(9,11),(13,16),(14,15),(17,18),(19,20),(22,24),(26,28),(29,31)], [(1,8,3,6),(2,5,4,7),(9,28,11,26),(10,25,12,27),(13,18,15,20),(14,19,16,17),(21,30,23,32),(22,31,24,29)], [(1,18,3,20),(2,19,4,17),(5,14,7,16),(6,15,8,13),(9,24,11,22),(10,21,12,23),(25,32,27,30),(26,29,28,31)], [(5,19,16),(6,20,13),(7,17,14),(8,18,15),(9,28,31),(10,25,32),(11,26,29),(12,27,30)], [(1,24,3,22),(2,23,4,21),(5,27,7,25),(6,26,8,28),(9,20,11,18),(10,19,12,17),(13,29,15,31),(14,32,16,30)]])
Matrix representation of D4.S4 ►in GL4(𝔽3) generated by
1 | 2 | 1 | 0 |
1 | 1 | 0 | 2 |
2 | 2 | 2 | 2 |
2 | 1 | 1 | 2 |
2 | 2 | 0 | 1 |
2 | 1 | 2 | 0 |
0 | 1 | 2 | 2 |
2 | 0 | 2 | 1 |
2 | 1 | 0 | 1 |
0 | 2 | 1 | 0 |
0 | 1 | 1 | 0 |
1 | 2 | 2 | 1 |
2 | 0 | 0 | 1 |
2 | 2 | 1 | 0 |
1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
0 | 0 | 1 | 2 |
1 | 1 | 2 | 1 |
1 | 2 | 2 | 2 |
2 | 2 | 0 | 1 |
0 | 0 | 2 | 2 |
1 | 2 | 2 | 0 |
2 | 2 | 0 | 2 |
2 | 1 | 0 | 1 |
G:=sub<GL(4,GF(3))| [1,1,2,2,2,1,2,1,1,0,2,1,0,2,2,2],[2,2,0,2,2,1,1,0,0,2,2,2,1,0,2,1],[2,0,0,1,1,2,1,2,0,1,1,2,1,0,0,1],[2,2,1,1,0,2,1,0,0,1,1,0,1,0,1,1],[0,1,1,2,0,1,2,2,1,2,2,0,2,1,2,1],[0,1,2,2,0,2,2,1,2,2,0,0,2,0,2,1] >;
D4.S4 in GAP, Magma, Sage, TeX
D_4.S_4
% in TeX
G:=Group("D4.S4");
// GroupNames label
G:=SmallGroup(192,989);
// by ID
G=gap.SmallGroup(192,989);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,672,85,2102,1059,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^2=e^3=1,c^2=d^2=f^2=a^2,b*a*b=f*a*f^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=a*b,d*c*d^-1=a^2*c,e*c*e^-1=a^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=a^2*d,f*e*f^-1=e^-1>;
// generators/relations
Export