Copied to
clipboard

G = 2- 1+4.2S3order 192 = 26·3

The non-split extension by 2- 1+4 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: 2- 1+4.2S3, C4oD4.28D6, (C3xD4).35D4, (C2xC12).23D4, (C2xQ8).97D6, (C3xQ8).35D4, C6.85C22wrC2, Q8.14D6:6C2, C12.220(C2xD4), Dic3:Q8:8C2, C3:5(D4.10D4), D4.17(C3:D4), (C2xC12).24C23, Q8.24(C3:D4), Q8:3Dic3:14C2, C12.10D4:12C2, (C6xQ8).100C22, C2.19(C24:4S3), (C4xDic3).61C22, C4.Dic3.31C22, (C3x2- 1+4).1C2, (C2xDic6).140C22, (C2xC6).47(C2xD4), C4.67(C2xC3:D4), (C2xC4).14(C3:D4), (C2xC4).24(C22xS3), C22.19(C2xC3:D4), (C3xC4oD4).22C22, SmallGroup(192,805)

Series: Derived Chief Lower central Upper central

C1C2xC12 — 2- 1+4.2S3
C1C3C6C2xC6C2xC12C2xDic6Q8.14D6 — 2- 1+4.2S3
C3C6C2xC12 — 2- 1+4.2S3
C1C2C2xC42- 1+4

Generators and relations for 2- 1+4.2S3
 G = < a,b,c,d,e,f | a4=b2=e3=1, c2=d2=f2=a2, bab=faf-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, fbf-1=ab, dcd-1=fcf-1=a2c, ce=ec, de=ed, fdf-1=a2cd, fef-1=e-1 >

Subgroups: 328 in 142 conjugacy classes, 43 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, Dic3, C12, C12, C2xC6, C2xC6, C42, C4:C4, M4(2), SD16, Q16, C2xQ8, C2xQ8, C4oD4, C4oD4, C3:C8, Dic6, C2xDic3, C2xC12, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C4.10D4, C4wrC2, C4:Q8, C8.C22, 2- 1+4, C4.Dic3, C4xDic3, Dic3:C4, D4.S3, C3:Q16, C2xDic6, C6xQ8, C6xQ8, C3xC4oD4, C3xC4oD4, D4.10D4, C12.10D4, Q8:3Dic3, Dic3:Q8, Q8.14D6, C3x2- 1+4, 2- 1+4.2S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C2xC3:D4, D4.10D4, C24:4S3, 2- 1+4.2S3

Smallest permutation representation of 2- 1+4.2S3
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 33)(2 36)(3 35)(4 34)(5 31)(6 30)(7 29)(8 32)(9 27)(10 26)(11 25)(12 28)(13 43)(14 42)(15 41)(16 44)(17 39)(18 38)(19 37)(20 40)(21 46)(22 45)(23 48)(24 47)
(1 2 3 4)(5 8 7 6)(9 12 11 10)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 36 35 34)(37 40 39 38)(41 44 43 42)(45 48 47 46)
(1 47 3 45)(2 48 4 46)(5 17 7 19)(6 18 8 20)(9 15 11 13)(10 16 12 14)(21 36 23 34)(22 33 24 35)(25 43 27 41)(26 44 28 42)(29 37 31 39)(30 38 32 40)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 47)(6 11 48)(7 12 45)(8 9 46)(21 32 27)(22 29 28)(23 30 25)(24 31 26)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 22 3 24)(2 21 4 23)(5 41 7 43)(6 44 8 42)(9 37 11 39)(10 40 12 38)(13 30 15 32)(14 29 16 31)(17 26 19 28)(18 25 20 27)(33 48 35 46)(34 47 36 45)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,33)(2,36)(3,35)(4,34)(5,31)(6,30)(7,29)(8,32)(9,27)(10,26)(11,25)(12,28)(13,43)(14,42)(15,41)(16,44)(17,39)(18,38)(19,37)(20,40)(21,46)(22,45)(23,48)(24,47), (1,2,3,4)(5,8,7,6)(9,12,11,10)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,36,35,34)(37,40,39,38)(41,44,43,42)(45,48,47,46), (1,47,3,45)(2,48,4,46)(5,17,7,19)(6,18,8,20)(9,15,11,13)(10,16,12,14)(21,36,23,34)(22,33,24,35)(25,43,27,41)(26,44,28,42)(29,37,31,39)(30,38,32,40), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,47)(6,11,48)(7,12,45)(8,9,46)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,22,3,24)(2,21,4,23)(5,41,7,43)(6,44,8,42)(9,37,11,39)(10,40,12,38)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,48,35,46)(34,47,36,45)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,33)(2,36)(3,35)(4,34)(5,31)(6,30)(7,29)(8,32)(9,27)(10,26)(11,25)(12,28)(13,43)(14,42)(15,41)(16,44)(17,39)(18,38)(19,37)(20,40)(21,46)(22,45)(23,48)(24,47), (1,2,3,4)(5,8,7,6)(9,12,11,10)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,36,35,34)(37,40,39,38)(41,44,43,42)(45,48,47,46), (1,47,3,45)(2,48,4,46)(5,17,7,19)(6,18,8,20)(9,15,11,13)(10,16,12,14)(21,36,23,34)(22,33,24,35)(25,43,27,41)(26,44,28,42)(29,37,31,39)(30,38,32,40), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,47)(6,11,48)(7,12,45)(8,9,46)(21,32,27)(22,29,28)(23,30,25)(24,31,26)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,22,3,24)(2,21,4,23)(5,41,7,43)(6,44,8,42)(9,37,11,39)(10,40,12,38)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,48,35,46)(34,47,36,45) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,33),(2,36),(3,35),(4,34),(5,31),(6,30),(7,29),(8,32),(9,27),(10,26),(11,25),(12,28),(13,43),(14,42),(15,41),(16,44),(17,39),(18,38),(19,37),(20,40),(21,46),(22,45),(23,48),(24,47)], [(1,2,3,4),(5,8,7,6),(9,12,11,10),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,36,35,34),(37,40,39,38),(41,44,43,42),(45,48,47,46)], [(1,47,3,45),(2,48,4,46),(5,17,7,19),(6,18,8,20),(9,15,11,13),(10,16,12,14),(21,36,23,34),(22,33,24,35),(25,43,27,41),(26,44,28,42),(29,37,31,39),(30,38,32,40)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,47),(6,11,48),(7,12,45),(8,9,46),(21,32,27),(22,29,28),(23,30,25),(24,31,26),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,22,3,24),(2,21,4,23),(5,41,7,43),(6,44,8,42),(9,37,11,39),(10,40,12,38),(13,30,15,32),(14,29,16,31),(17,26,19,28),(18,25,20,27),(33,48,35,46),(34,47,36,45)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B···6F8A8B12A···12J
order12222344444444466···68812···12
size11244222444412122424···424244···4

33 irreducible representations

dim11111122222222248
type++++++++++++--
imageC1C2C2C2C2C2S3D4D4D4D6D6C3:D4C3:D4C3:D4D4.10D42- 1+4.2S3
kernel2- 1+4.2S3C12.10D4Q8:3Dic3Dic3:Q8Q8.14D6C3x2- 1+42- 1+4C2xC12C3xD4C3xQ8C2xQ8C4oD4C2xC4D4Q8C3C1
# reps11212112221244421

Matrix representation of 2- 1+4.2S3 in GL6(F73)

7200000
0720000
000100
0072000
00727212
00017272
,
7200000
010000
00727212
000010
000100
0007211
,
100000
010000
000100
0072000
00117271
0072011
,
7200000
0720000
0041411564
0017172439
00564100
001705615
,
6400000
080000
001000
000100
000010
000001
,
080000
6400000
00411700
00173200
0041411564
000321758

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,72,0,0,0,1,0,72,1,0,0,0,0,1,72,0,0,0,0,2,72],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,72,0,1,72,0,0,1,1,0,1,0,0,2,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,1,72,0,0,1,0,1,0,0,0,0,0,72,1,0,0,0,0,71,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,41,17,56,17,0,0,41,17,41,0,0,0,15,24,0,56,0,0,64,39,0,15],[64,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,64,0,0,0,0,8,0,0,0,0,0,0,0,41,17,41,0,0,0,17,32,41,32,0,0,0,0,15,17,0,0,0,0,64,58] >;

2- 1+4.2S3 in GAP, Magma, Sage, TeX

2_-^{1+4}._2S_3
% in TeX

G:=Group("ES-(2,2).2S3");
// GroupNames label

G:=SmallGroup(192,805);
// by ID

G=gap.SmallGroup(192,805);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,254,184,570,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=e^3=1,c^2=d^2=f^2=a^2,b*a*b=f*a*f^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=a*b,d*c*d^-1=f*c*f^-1=a^2*c,c*e=e*c,d*e=e*d,f*d*f^-1=a^2*c*d,f*e*f^-1=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<