Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊D6

Direct product G=N×Q with N=C2 and Q=D4⋊D6
dρLabelID
C2×D4⋊D648C2xD4:D6192,1379


Non-split extensions G=N.Q with N=C2 and Q=D4⋊D6
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊D6) = C4⋊C4.232D6central extension (φ=1)96C2.1(D4:D6)192,554
C2.2(D4⋊D6) = C4⋊C436D6central extension (φ=1)48C2.2(D4:D6)192,560
C2.3(D4⋊D6) = C42.48D6central extension (φ=1)96C2.3(D4:D6)192,573
C2.4(D4⋊D6) = C42.56D6central extension (φ=1)96C2.4(D4:D6)192,585
C2.5(D4⋊D6) = C4○D43Dic3central extension (φ=1)96C2.5(D4:D6)192,791
C2.6(D4⋊D6) = C4⋊C4.236D6central stem extension (φ=1)96C2.6(D4:D6)192,562
C2.7(D4⋊D6) = C12.38SD16central stem extension (φ=1)96C2.7(D4:D6)192,567
C2.8(D4⋊D6) = C127D8central stem extension (φ=1)96C2.8(D4:D6)192,574
C2.9(D4⋊D6) = Q85Dic6central stem extension (φ=1)192C2.9(D4:D6)192,580
C2.10(D4⋊D6) = Q82D12central stem extension (φ=1)96C2.10(D4:D6)192,586
C2.11(D4⋊D6) = C4⋊D4.S3central stem extension (φ=1)96C2.11(D4:D6)192,593
C2.12(D4⋊D6) = D1216D4central stem extension (φ=1)48C2.12(D4:D6)192,595
C2.13(D4⋊D6) = C4⋊D4⋊S3central stem extension (φ=1)96C2.13(D4:D6)192,598
C2.14(D4⋊D6) = (C2×C6).Q16central stem extension (φ=1)96C2.14(D4:D6)192,603
C2.15(D4⋊D6) = D12.36D4central stem extension (φ=1)48C2.15(D4:D6)192,605
C2.16(D4⋊D6) = C3⋊C86D4central stem extension (φ=1)96C2.16(D4:D6)192,608
C2.17(D4⋊D6) = C42.62D6central stem extension (φ=1)96C2.17(D4:D6)192,614
C2.18(D4⋊D6) = D12.23D4central stem extension (φ=1)96C2.18(D4:D6)192,616
C2.19(D4⋊D6) = C42.64D6central stem extension (φ=1)96C2.19(D4:D6)192,617
C2.20(D4⋊D6) = C42.68D6central stem extension (φ=1)192C2.20(D4:D6)192,623
C2.21(D4⋊D6) = D12.4Q8central stem extension (φ=1)96C2.21(D4:D6)192,625
C2.22(D4⋊D6) = C42.70D6central stem extension (φ=1)96C2.22(D4:D6)192,626
C2.23(D4⋊D6) = (C3×D4)⋊14D4central stem extension (φ=1)96C2.23(D4:D6)192,797

׿
×
𝔽