Copied to
clipboard

G = C4:C4:36D6order 192 = 26·3

2nd semidirect product of C4:C4 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4:36D6, (C2xD12):11C4, C4.62(C2xD12), (C2xC4).46D12, C42:C2:1S3, C4.23(D6:C4), D12.25(C2xC4), C6.D8:27C2, C12.142(C2xD4), (C2xC12).472D4, (C22xC6).74D4, C2.2(D4:D6), C12.64(C22xC4), (C22xC4).126D6, C6.105(C8:C22), C12.47(C22:C4), (C2xC12).328C23, C22.23(D6:C4), (C22xD12).12C2, C23.61(C3:D4), C3:2(C23.37D4), (C2xD12).234C22, (C22xC12).150C22, C4.51(S3xC2xC4), (C2xC3:C8):4C22, (C2xC4).44(C4xS3), C2.17(C2xD6:C4), (C3xC4:C4):41C22, (C2xC12).91(C2xC4), (C2xC6).457(C2xD4), C6.44(C2xC22:C4), (C2xC4.Dic3):9C2, (C3xC42:C2):1C2, C22.72(C2xC3:D4), (C2xC4).241(C3:D4), (C2xC6).14(C22:C4), (C2xC4).428(C22xS3), SmallGroup(192,560)

Series: Derived Chief Lower central Upper central

C1C12 — C4:C4:36D6
C1C3C6C2xC6C2xC12C2xD12C22xD12 — C4:C4:36D6
C3C6C12 — C4:C4:36D6
C1C22C22xC4C42:C2

Generators and relations for C4:C4:36D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=dad=a-1, ac=ca, cbc-1=a2b, dbd=ab-1, dcd=c-1 >

Subgroups: 680 in 190 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, C23, C23, C12, C12, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C2xD4, C24, C3:C8, D12, D12, C2xC12, C2xC12, C2xC12, C22xS3, C22xC6, D4:C4, C42:C2, C2xM4(2), C22xD4, C2xC3:C8, C4.Dic3, C4xC12, C3xC22:C4, C3xC4:C4, C2xD12, C2xD12, C22xC12, S3xC23, C23.37D4, C6.D8, C2xC4.Dic3, C3xC42:C2, C22xD12, C4:C4:36D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, D12, C3:D4, C22xS3, C2xC22:C4, C8:C22, D6:C4, S3xC2xC4, C2xD12, C2xC3:D4, C23.37D4, C2xD6:C4, D4:D6, C4:C4:36D6

Smallest permutation representation of C4:C4:36D6
On 48 points
Generators in S48
(1 9 19 29)(2 10 20 30)(3 11 21 25)(4 12 22 26)(5 7 23 27)(6 8 24 28)(13 41 33 44)(14 42 34 45)(15 37 35 46)(16 38 36 47)(17 39 31 48)(18 40 32 43)
(1 43 22 46)(2 41 23 38)(3 45 24 48)(4 37 19 40)(5 47 20 44)(6 39 21 42)(7 36 30 33)(8 17 25 14)(9 32 26 35)(10 13 27 16)(11 34 28 31)(12 15 29 18)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 3)(4 6)(7 27)(8 26)(9 25)(10 30)(11 29)(12 28)(13 38)(14 37)(15 42)(16 41)(17 40)(18 39)(19 21)(22 24)(31 43)(32 48)(33 47)(34 46)(35 45)(36 44)

G:=sub<Sym(48)| (1,9,19,29)(2,10,20,30)(3,11,21,25)(4,12,22,26)(5,7,23,27)(6,8,24,28)(13,41,33,44)(14,42,34,45)(15,37,35,46)(16,38,36,47)(17,39,31,48)(18,40,32,43), (1,43,22,46)(2,41,23,38)(3,45,24,48)(4,37,19,40)(5,47,20,44)(6,39,21,42)(7,36,30,33)(8,17,25,14)(9,32,26,35)(10,13,27,16)(11,34,28,31)(12,15,29,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,6)(7,27)(8,26)(9,25)(10,30)(11,29)(12,28)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,21)(22,24)(31,43)(32,48)(33,47)(34,46)(35,45)(36,44)>;

G:=Group( (1,9,19,29)(2,10,20,30)(3,11,21,25)(4,12,22,26)(5,7,23,27)(6,8,24,28)(13,41,33,44)(14,42,34,45)(15,37,35,46)(16,38,36,47)(17,39,31,48)(18,40,32,43), (1,43,22,46)(2,41,23,38)(3,45,24,48)(4,37,19,40)(5,47,20,44)(6,39,21,42)(7,36,30,33)(8,17,25,14)(9,32,26,35)(10,13,27,16)(11,34,28,31)(12,15,29,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,6)(7,27)(8,26)(9,25)(10,30)(11,29)(12,28)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,21)(22,24)(31,43)(32,48)(33,47)(34,46)(35,45)(36,44) );

G=PermutationGroup([[(1,9,19,29),(2,10,20,30),(3,11,21,25),(4,12,22,26),(5,7,23,27),(6,8,24,28),(13,41,33,44),(14,42,34,45),(15,37,35,46),(16,38,36,47),(17,39,31,48),(18,40,32,43)], [(1,43,22,46),(2,41,23,38),(3,45,24,48),(4,37,19,40),(5,47,20,44),(6,39,21,42),(7,36,30,33),(8,17,25,14),(9,32,26,35),(10,13,27,16),(11,34,28,31),(12,15,29,18)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,3),(4,6),(7,27),(8,26),(9,25),(10,30),(11,29),(12,28),(13,38),(14,37),(15,42),(16,41),(17,40),(18,39),(19,21),(22,24),(31,43),(32,48),(33,47),(34,46),(35,45),(36,44)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D12E···12N
order12222222223444444446666688881212121212···12
size11112212121212222224444222441212121222224···4

42 irreducible representations

dim11111122222222244
type+++++++++++++
imageC1C2C2C2C2C4S3D4D4D6D6C4xS3D12C3:D4C3:D4C8:C22D4:D6
kernelC4:C4:36D6C6.D8C2xC4.Dic3C3xC42:C2C22xD12C2xD12C42:C2C2xC12C22xC6C4:C4C22xC4C2xC4C2xC4C2xC4C23C6C2
# reps14111813121442224

Matrix representation of C4:C4:36D6 in GL6(F73)

7200000
0720000
0075900
00146600
00006614
0000597
,
4600000
0460000
0000720
0000072
001000
000100
,
72720000
100000
0007200
0017200
000001
0000721
,
110000
0720000
0072100
000100
000077
00001466

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,7,14,0,0,0,0,59,66,0,0,0,0,0,0,66,59,0,0,0,0,14,7],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,72,0,0],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,72,0,0,0,0,1,1],[1,0,0,0,0,0,1,72,0,0,0,0,0,0,72,0,0,0,0,0,1,1,0,0,0,0,0,0,7,14,0,0,0,0,7,66] >;

C4:C4:36D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{36}D_6
% in TeX

G:=Group("C4:C4:36D6");
// GroupNames label

G:=SmallGroup(192,560);
// by ID

G=gap.SmallGroup(192,560);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,387,58,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a*b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<