Copied to
clipboard

G = C12:7D8order 192 = 26·3

1st semidirect product of C12 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12:7D8, D4:1D12, C42.49D6, (C3xD4):8D4, (C4xD4):3S3, C4:3(D4:S3), (D4xC12):3C2, C3:3(C4:D8), C6.52(C2xD8), C4:D12:8C2, C4:C4.243D6, C12:C8:23C2, (C2xC12).60D4, C4.13(C2xD12), C12.17(C2xD4), (C2xD4).190D6, C4.9(C4oD12), C6.D8:30C2, C12.50(C4oD4), C2.8(D4:D6), C6.64(C4:D4), (C4xC12).86C22, C2.12(C12:7D4), C6.109(C8:C22), (C2xC12).337C23, (C6xD4).232C22, (C2xD12).93C22, (C2xD4:S3):7C2, C2.7(C2xD4:S3), (C2xC6).468(C2xD4), (C2xC3:C8).93C22, (C2xC4).245(C3:D4), (C3xC4:C4).274C22, (C2xC4).437(C22xS3), C22.149(C2xC3:D4), SmallGroup(192,574)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C12:7D8
C1C3C6C12C2xC12C2xD12C4:D12 — C12:7D8
C3C6C2xC12 — C12:7D8
C1C22C42C4xD4

Generators and relations for C12:7D8
 G = < a,b,c | a12=b8=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 504 in 140 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, C23, C12, C12, C12, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, D8, C22xC4, C2xD4, C2xD4, C3:C8, D12, C2xC12, C2xC12, C3xD4, C3xD4, C22xS3, C22xC6, D4:C4, C4:C8, C4xD4, C4:1D4, C2xD8, C2xC3:C8, D4:S3, C4xC12, C3xC22:C4, C3xC4:C4, C2xD12, C2xD12, C22xC12, C6xD4, C4:D8, C12:C8, C6.D8, C4:D12, C2xD4:S3, D4xC12, C12:7D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, C2xD8, C8:C22, D4:S3, C2xD12, C4oD12, C2xC3:D4, C4:D8, C12:7D4, C2xD4:S3, D4:D6, C12:7D8

Smallest permutation representation of C12:7D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 52 69 89 22 38 30 81)(2 51 70 88 23 37 31 80)(3 50 71 87 24 48 32 79)(4 49 72 86 13 47 33 78)(5 60 61 85 14 46 34 77)(6 59 62 96 15 45 35 76)(7 58 63 95 16 44 36 75)(8 57 64 94 17 43 25 74)(9 56 65 93 18 42 26 73)(10 55 66 92 19 41 27 84)(11 54 67 91 20 40 28 83)(12 53 68 90 21 39 29 82)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 19)(14 18)(15 17)(20 24)(21 23)(25 62)(26 61)(27 72)(28 71)(29 70)(30 69)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 96)(44 95)(45 94)(46 93)(47 92)(48 91)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 78)(56 77)(57 76)(58 75)(59 74)(60 73)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,52,69,89,22,38,30,81)(2,51,70,88,23,37,31,80)(3,50,71,87,24,48,32,79)(4,49,72,86,13,47,33,78)(5,60,61,85,14,46,34,77)(6,59,62,96,15,45,35,76)(7,58,63,95,16,44,36,75)(8,57,64,94,17,43,25,74)(9,56,65,93,18,42,26,73)(10,55,66,92,19,41,27,84)(11,54,67,91,20,40,28,83)(12,53,68,90,21,39,29,82), (2,12)(3,11)(4,10)(5,9)(6,8)(13,19)(14,18)(15,17)(20,24)(21,23)(25,62)(26,61)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,52,69,89,22,38,30,81)(2,51,70,88,23,37,31,80)(3,50,71,87,24,48,32,79)(4,49,72,86,13,47,33,78)(5,60,61,85,14,46,34,77)(6,59,62,96,15,45,35,76)(7,58,63,95,16,44,36,75)(8,57,64,94,17,43,25,74)(9,56,65,93,18,42,26,73)(10,55,66,92,19,41,27,84)(11,54,67,91,20,40,28,83)(12,53,68,90,21,39,29,82), (2,12)(3,11)(4,10)(5,9)(6,8)(13,19)(14,18)(15,17)(20,24)(21,23)(25,62)(26,61)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,52,69,89,22,38,30,81),(2,51,70,88,23,37,31,80),(3,50,71,87,24,48,32,79),(4,49,72,86,13,47,33,78),(5,60,61,85,14,46,34,77),(6,59,62,96,15,45,35,76),(7,58,63,95,16,44,36,75),(8,57,64,94,17,43,25,74),(9,56,65,93,18,42,26,73),(10,55,66,92,19,41,27,84),(11,54,67,91,20,40,28,83),(12,53,68,90,21,39,29,82)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,19),(14,18),(15,17),(20,24),(21,23),(25,62),(26,61),(27,72),(28,71),(29,70),(30,69),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,96),(44,95),(45,94),(46,93),(47,92),(48,91),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,78),(56,77),(57,76),(58,75),(59,74),(60,73)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D12E···12L
order1222222234444444666666688881212121212···12
size11114424242222244422244441212121222224···4

39 irreducible representations

dim11111122222222222444
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D6D8C4oD4C3:D4D12C4oD12C8:C22D4:S3D4:D6
kernelC12:7D8C12:C8C6.D8C4:D12C2xD4:S3D4xC12C4xD4C2xC12C3xD4C42C4:C4C2xD4C12C12C2xC4D4C4C6C4C2
# reps11212112211142444122

Matrix representation of C12:7D8 in GL6(F73)

7200000
0720000
00271900
0004600
0000721
0000720
,
57160000
57570000
0072200
0072100
0000072
0000720
,
100000
0720000
001000
0017200
000001
000010

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,0,0,0,19,46,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[57,57,0,0,0,0,16,57,0,0,0,0,0,0,72,72,0,0,0,0,2,1,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C12:7D8 in GAP, Magma, Sage, TeX

C_{12}\rtimes_7D_8
% in TeX

G:=Group("C12:7D8");
// GroupNames label

G:=SmallGroup(192,574);
// by ID

G=gap.SmallGroup(192,574);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<