Extensions 1→N→G→Q→1 with N=U2(𝔽3) and Q=C2

Direct product G=N×Q with N=U2(𝔽3) and Q=C2
dρLabelID
C2×U2(𝔽3)48C2xU(2,3)192,981

Semidirect products G=N:Q with N=U2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
U2(𝔽3)⋊1C2 = Q8.4S4φ: C2/C1C2 ⊆ Out U2(𝔽3)484U(2,3):1C2192,987
U2(𝔽3)⋊2C2 = Q8.5S4φ: C2/C1C2 ⊆ Out U2(𝔽3)244+U(2,3):2C2192,988
U2(𝔽3)⋊3C2 = D4.S4φ: C2/C1C2 ⊆ Out U2(𝔽3)324-U(2,3):3C2192,989
U2(𝔽3)⋊4C2 = D4.3S4φ: C2/C1C2 ⊆ Out U2(𝔽3)324U(2,3):4C2192,990
U2(𝔽3)⋊5C2 = C8.5S4φ: C2/C1C2 ⊆ Out U2(𝔽3)324U(2,3):5C2192,964
U2(𝔽3)⋊6C2 = U2(𝔽3)⋊C2φ: C2/C1C2 ⊆ Out U2(𝔽3)324U(2,3):6C2192,982
U2(𝔽3)⋊7C2 = CU2(𝔽3)φ: trivial image322U(2,3):7C2192,963


׿
×
𝔽