Extensions 1→N→G→Q→1 with N=C4 and Q=C24⋊C2

Direct product G=N×Q with N=C4 and Q=C24⋊C2
dρLabelID
C4×C24⋊C296C4xC24:C2192,250

Semidirect products G=N:Q with N=C4 and Q=C24⋊C2
extensionφ:Q→Aut NdρLabelID
C41(C24⋊C2) = C85D12φ: C24⋊C2/C24C2 ⊆ Aut C496C4:1(C24:C2)192,252
C42(C24⋊C2) = Dic68D4φ: C24⋊C2/Dic6C2 ⊆ Aut C496C4:2(C24:C2)192,407
C43(C24⋊C2) = C12⋊SD16φ: C24⋊C2/D12C2 ⊆ Aut C496C4:3(C24:C2)192,400

Non-split extensions G=N.Q with N=C4 and Q=C24⋊C2
extensionφ:Q→Aut NdρLabelID
C4.1(C24⋊C2) = C2.Dic24φ: C24⋊C2/C24C2 ⊆ Aut C4192C4.1(C24:C2)192,62
C4.2(C24⋊C2) = C2.D48φ: C24⋊C2/C24C2 ⊆ Aut C496C4.2(C24:C2)192,68
C4.3(C24⋊C2) = C249Q8φ: C24⋊C2/C24C2 ⊆ Aut C4192C4.3(C24:C2)192,239
C4.4(C24⋊C2) = C12.14Q16φ: C24⋊C2/C24C2 ⊆ Aut C4192C4.4(C24:C2)192,240
C4.5(C24⋊C2) = C4.5D24φ: C24⋊C2/C24C2 ⊆ Aut C496C4.5(C24:C2)192,253
C4.6(C24⋊C2) = C4.D24φ: C24⋊C2/Dic6C2 ⊆ Aut C496C4.6(C24:C2)192,44
C4.7(C24⋊C2) = C12.2D8φ: C24⋊C2/Dic6C2 ⊆ Aut C4192C4.7(C24:C2)192,45
C4.8(C24⋊C2) = Dic64Q8φ: C24⋊C2/Dic6C2 ⊆ Aut C4192C4.8(C24:C2)192,410
C4.9(C24⋊C2) = C4.Dic12φ: C24⋊C2/D12C2 ⊆ Aut C4192C4.9(C24:C2)192,40
C4.10(C24⋊C2) = C12.47D8φ: C24⋊C2/D12C2 ⊆ Aut C4192C4.10(C24:C2)192,41
C4.11(C24⋊C2) = C24.Q8φ: C24⋊C2/D12C2 ⊆ Aut C4484C4.11(C24:C2)192,72
C4.12(C24⋊C2) = D242C4φ: C24⋊C2/D12C2 ⊆ Aut C4484C4.12(C24:C2)192,77
C4.13(C24⋊C2) = D123Q8φ: C24⋊C2/D12C2 ⊆ Aut C496C4.13(C24:C2)192,401
C4.14(C24⋊C2) = C4.8Dic12central extension (φ=1)192C4.14(C24:C2)192,15
C4.15(C24⋊C2) = C242C8central extension (φ=1)192C4.15(C24:C2)192,16
C4.16(C24⋊C2) = C4.17D24central extension (φ=1)96C4.16(C24:C2)192,18

׿
×
𝔽