metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D24⋊2C4, C24.86D4, Dic12⋊2C4, M5(2)⋊6S3, C12.7SD16, C22.3D24, C8.6(C4×S3), (C2×C6).2D8, C24.3(C2×C4), C8⋊Dic3⋊1C2, (C2×C8).48D6, C3⋊2(D8⋊2C4), C4○D24.7C2, (C2×C4).11D12, C4.20(D6⋊C4), (C2×C12).101D4, C8.43(C3⋊D4), C4.12(C24⋊C2), (C3×M5(2))⋊10C2, (C2×C24).52C22, C6.19(D4⋊C4), C12.44(C22⋊C4), C2.11(C2.D24), SmallGroup(192,77)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24⋊2C4
G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a7b >
Subgroups: 232 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C4.Q8, M5(2), C4○D8, C48, C24⋊C2, D24, Dic12, C4⋊Dic3, C2×C24, C4○D12, D8⋊2C4, C8⋊Dic3, C3×M5(2), C4○D24, D24⋊2C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C4×S3, D12, C3⋊D4, D4⋊C4, C24⋊C2, D24, D6⋊C4, D8⋊2C4, C2.D24, D24⋊2C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 40 37 28)(26 27 38 39)(29 36 41 48)(30 47 42 35)(31 34 43 46)(32 45 44 33)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,40,37,28)(26,27,38,39)(29,36,41,48)(30,47,42,35)(31,34,43,46)(32,45,44,33)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,40,37,28)(26,27,38,39)(29,36,41,48)(30,47,42,35)(31,34,43,46)(32,45,44,33) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,40,37,28),(26,27,38,39),(29,36,41,48),(30,47,42,35),(31,34,43,46),(32,45,44,33)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 8A | 8B | 8C | 12A | 12B | 12C | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | 24E | 24F | 48A | ··· | 48H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 8 | 8 | 8 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 24 | 24 | 24 | 24 | 24 | 24 | 48 | ··· | 48 |
size | 1 | 1 | 2 | 24 | 2 | 2 | 2 | 24 | 24 | 24 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D4 | D6 | SD16 | D8 | C4×S3 | C3⋊D4 | D12 | C24⋊C2 | D24 | D8⋊2C4 | D24⋊2C4 |
kernel | D24⋊2C4 | C8⋊Dic3 | C3×M5(2) | C4○D24 | D24 | Dic12 | M5(2) | C24 | C2×C12 | C2×C8 | C12 | C2×C6 | C8 | C8 | C2×C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 |
Matrix representation of D24⋊2C4 ►in GL6(𝔽97)
0 | 1 | 0 | 0 | 0 | 0 |
96 | 96 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 74 | 0 | 0 |
0 | 0 | 59 | 0 | 0 | 0 |
0 | 0 | 81 | 85 | 40 | 40 |
0 | 0 | 89 | 85 | 57 | 40 |
0 | 96 | 0 | 0 | 0 | 0 |
96 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 73 | 0 | 23 | 23 |
0 | 0 | 8 | 0 | 0 | 17 |
0 | 0 | 55 | 57 | 12 | 12 |
0 | 0 | 17 | 40 | 12 | 12 |
22 | 0 | 0 | 0 | 0 | 0 |
75 | 75 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 64 | 96 | 0 | 0 |
0 | 0 | 76 | 0 | 57 | 57 |
0 | 0 | 68 | 0 | 57 | 40 |
G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,17,59,81,89,0,0,74,0,85,85,0,0,0,0,40,57,0,0,0,0,40,40],[0,96,0,0,0,0,96,0,0,0,0,0,0,0,73,8,55,17,0,0,0,0,57,40,0,0,23,0,12,12,0,0,23,17,12,12],[22,75,0,0,0,0,0,75,0,0,0,0,0,0,1,64,76,68,0,0,0,96,0,0,0,0,0,0,57,57,0,0,0,0,57,40] >;
D24⋊2C4 in GAP, Magma, Sage, TeX
D_{24}\rtimes_2C_4
% in TeX
G:=Group("D24:2C4");
// GroupNames label
G:=SmallGroup(192,77);
// by ID
G=gap.SmallGroup(192,77);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,92,422,387,268,570,136,1684,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^7*b>;
// generators/relations