Copied to
clipboard

G = D24:2C4order 192 = 26·3

2nd semidirect product of D24 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24:2C4, C24.86D4, Dic12:2C4, M5(2):6S3, C12.7SD16, C22.3D24, C8.6(C4xS3), (C2xC6).2D8, C24.3(C2xC4), C8:Dic3:1C2, (C2xC8).48D6, C3:2(D8:2C4), C4oD24.7C2, (C2xC4).11D12, C4.20(D6:C4), (C2xC12).101D4, C8.43(C3:D4), C4.12(C24:C2), (C3xM5(2)):10C2, (C2xC24).52C22, C6.19(D4:C4), C12.44(C22:C4), C2.11(C2.D24), SmallGroup(192,77)

Series: Derived Chief Lower central Upper central

C1C24 — D24:2C4
C1C3C6C12C24C2xC24C4oD24 — D24:2C4
C3C6C12C24 — D24:2C4
C1C2C2xC4C2xC8M5(2)

Generators and relations for D24:2C4
 G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a7b >

Subgroups: 232 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, D6, C2xC6, C16, C4:C4, C2xC8, D8, SD16, Q16, C4oD4, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C4.Q8, M5(2), C4oD8, C48, C24:C2, D24, Dic12, C4:Dic3, C2xC24, C4oD12, D8:2C4, C8:Dic3, C3xM5(2), C4oD24, D24:2C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, C24:C2, D24, D6:C4, D8:2C4, C2.D24, D24:2C4

Smallest permutation representation of D24:2C4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 40 37 28)(26 27 38 39)(29 36 41 48)(30 47 42 35)(31 34 43 46)(32 45 44 33)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,40,37,28)(26,27,38,39)(29,36,41,48)(30,47,42,35)(31,34,43,46)(32,45,44,33)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,40,37,28)(26,27,38,39)(29,36,41,48)(30,47,42,35)(31,34,43,46)(32,45,44,33) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,40,37,28),(26,27,38,39),(29,36,41,48),(30,47,42,35),(31,34,43,46),(32,45,44,33)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E6A6B8A8B8C12A12B12C16A16B16C16D24A24B24C24D24E24F48A···48H
order1222344444668881212121616161624242424242448···48
size112242222424242422422444442222444···4

36 irreducible representations

dim1111112222222222244
type+++++++++++
imageC1C2C2C2C4C4S3D4D4D6SD16D8C4xS3C3:D4D12C24:C2D24D8:2C4D24:2C4
kernelD24:2C4C8:Dic3C3xM5(2)C4oD24D24Dic12M5(2)C24C2xC12C2xC8C12C2xC6C8C8C2xC4C4C22C3C1
# reps1111221111222224424

Matrix representation of D24:2C4 in GL6(F97)

010000
96960000
00177400
0059000
0081854040
0089855740
,
0960000
9600000
007302323
0080017
0055571212
0017401212
,
2200000
75750000
001000
00649600
007605757
006805740

G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,17,59,81,89,0,0,74,0,85,85,0,0,0,0,40,57,0,0,0,0,40,40],[0,96,0,0,0,0,96,0,0,0,0,0,0,0,73,8,55,17,0,0,0,0,57,40,0,0,23,0,12,12,0,0,23,17,12,12],[22,75,0,0,0,0,0,75,0,0,0,0,0,0,1,64,76,68,0,0,0,96,0,0,0,0,0,0,57,57,0,0,0,0,57,40] >;

D24:2C4 in GAP, Magma, Sage, TeX

D_{24}\rtimes_2C_4
% in TeX

G:=Group("D24:2C4");
// GroupNames label

G:=SmallGroup(192,77);
// by ID

G=gap.SmallGroup(192,77);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,92,422,387,268,570,136,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^7*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<