Copied to
clipboard

G = C4.D24order 192 = 26·3

1st non-split extension by C4 of D24 acting via D24/D12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.1D8, C4.9D24, C42.5D6, C12.47SD16, C4⋊C82S3, C12⋊C88C2, (C2×D12).2C4, C31(C4.D8), C4.6(C24⋊C2), C4.20(D4⋊S3), (C2×C12).465D4, C4⋊D12.4C2, (C2×C4).123D12, (C4×C12).43C22, C2.4(C2.D24), C2.5(C6.D8), C6.4(C4.D4), C6.12(D4⋊C4), C22.62(D6⋊C4), C4.12(Q82S3), C2.5(C12.46D4), (C3×C4⋊C8)⋊2C2, (C2×C4).16(C4×S3), (C2×C12).28(C2×C4), (C2×C4).229(C3⋊D4), (C2×C6).47(C22⋊C4), SmallGroup(192,44)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C4.D24
C1C3C6C2×C6C2×C12C4×C12C4⋊D12 — C4.D24
C3C2×C6C2×C12 — C4.D24
C1C22C42C4⋊C8

Generators and relations for C4.D24
 G = < a,b,c | a4=b24=1, c2=a, bab-1=a-1, ac=ca, cbc-1=ab-1 >

Subgroups: 376 in 84 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, D4, C23, C12, C12, D6, C2×C6, C42, C2×C8, C2×D4, C3⋊C8, C24, D12, C2×C12, C22×S3, C4⋊C8, C4⋊C8, C41D4, C2×C3⋊C8, C4×C12, C2×C24, C2×D12, C2×D12, C4.D8, C12⋊C8, C3×C4⋊C8, C4⋊D12, C4.D24
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C4×S3, D12, C3⋊D4, C4.D4, D4⋊C4, C24⋊C2, D24, D6⋊C4, D4⋊S3, Q82S3, C4.D8, C6.D8, C2.D24, C12.46D4, C4.D24

Smallest permutation representation of C4.D24
On 96 points
Generators in S96
(1 26 49 93)(2 94 50 27)(3 28 51 95)(4 96 52 29)(5 30 53 73)(6 74 54 31)(7 32 55 75)(8 76 56 33)(9 34 57 77)(10 78 58 35)(11 36 59 79)(12 80 60 37)(13 38 61 81)(14 82 62 39)(15 40 63 83)(16 84 64 41)(17 42 65 85)(18 86 66 43)(19 44 67 87)(20 88 68 45)(21 46 69 89)(22 90 70 47)(23 48 71 91)(24 92 72 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 92 26 72 49 25 93 24)(2 23 94 48 50 71 27 91)(3 90 28 70 51 47 95 22)(4 21 96 46 52 69 29 89)(5 88 30 68 53 45 73 20)(6 19 74 44 54 67 31 87)(7 86 32 66 55 43 75 18)(8 17 76 42 56 65 33 85)(9 84 34 64 57 41 77 16)(10 15 78 40 58 63 35 83)(11 82 36 62 59 39 79 14)(12 13 80 38 60 61 37 81)

G:=sub<Sym(96)| (1,26,49,93)(2,94,50,27)(3,28,51,95)(4,96,52,29)(5,30,53,73)(6,74,54,31)(7,32,55,75)(8,76,56,33)(9,34,57,77)(10,78,58,35)(11,36,59,79)(12,80,60,37)(13,38,61,81)(14,82,62,39)(15,40,63,83)(16,84,64,41)(17,42,65,85)(18,86,66,43)(19,44,67,87)(20,88,68,45)(21,46,69,89)(22,90,70,47)(23,48,71,91)(24,92,72,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,92,26,72,49,25,93,24)(2,23,94,48,50,71,27,91)(3,90,28,70,51,47,95,22)(4,21,96,46,52,69,29,89)(5,88,30,68,53,45,73,20)(6,19,74,44,54,67,31,87)(7,86,32,66,55,43,75,18)(8,17,76,42,56,65,33,85)(9,84,34,64,57,41,77,16)(10,15,78,40,58,63,35,83)(11,82,36,62,59,39,79,14)(12,13,80,38,60,61,37,81)>;

G:=Group( (1,26,49,93)(2,94,50,27)(3,28,51,95)(4,96,52,29)(5,30,53,73)(6,74,54,31)(7,32,55,75)(8,76,56,33)(9,34,57,77)(10,78,58,35)(11,36,59,79)(12,80,60,37)(13,38,61,81)(14,82,62,39)(15,40,63,83)(16,84,64,41)(17,42,65,85)(18,86,66,43)(19,44,67,87)(20,88,68,45)(21,46,69,89)(22,90,70,47)(23,48,71,91)(24,92,72,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,92,26,72,49,25,93,24)(2,23,94,48,50,71,27,91)(3,90,28,70,51,47,95,22)(4,21,96,46,52,69,29,89)(5,88,30,68,53,45,73,20)(6,19,74,44,54,67,31,87)(7,86,32,66,55,43,75,18)(8,17,76,42,56,65,33,85)(9,84,34,64,57,41,77,16)(10,15,78,40,58,63,35,83)(11,82,36,62,59,39,79,14)(12,13,80,38,60,61,37,81) );

G=PermutationGroup([[(1,26,49,93),(2,94,50,27),(3,28,51,95),(4,96,52,29),(5,30,53,73),(6,74,54,31),(7,32,55,75),(8,76,56,33),(9,34,57,77),(10,78,58,35),(11,36,59,79),(12,80,60,37),(13,38,61,81),(14,82,62,39),(15,40,63,83),(16,84,64,41),(17,42,65,85),(18,86,66,43),(19,44,67,87),(20,88,68,45),(21,46,69,89),(22,90,70,47),(23,48,71,91),(24,92,72,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,92,26,72,49,25,93,24),(2,23,94,48,50,71,27,91),(3,90,28,70,51,47,95,22),(4,21,96,46,52,69,29,89),(5,88,30,68,53,45,73,20),(6,19,74,44,54,67,31,87),(7,86,32,66,55,43,75,18),(8,17,76,42,56,65,33,85),(9,84,34,64,57,41,77,16),(10,15,78,40,58,63,35,83),(11,82,36,62,59,39,79,14),(12,13,80,38,60,61,37,81)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F12G12H24A···24H
order12222234444466688888888121212121212121224···24
size11112424222224222444412121212222244444···4

39 irreducible representations

dim1111122222222224444
type++++++++++++++
imageC1C2C2C2C4S3D4D6D8SD16C4×S3D12C3⋊D4C24⋊C2D24C4.D4D4⋊S3Q82S3C12.46D4
kernelC4.D24C12⋊C8C3×C4⋊C8C4⋊D12C2×D12C4⋊C8C2×C12C42C12C12C2×C4C2×C4C2×C4C4C4C6C4C4C2
# reps1111412144222441112

Matrix representation of C4.D24 in GL4(𝔽73) generated by

1000
0100
0013
004872
,
52300
505500
003248
003841
,
685000
55500
003248
00380
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,48,0,0,3,72],[5,50,0,0,23,55,0,0,0,0,32,38,0,0,48,41],[68,55,0,0,50,5,0,0,0,0,32,38,0,0,48,0] >;

C4.D24 in GAP, Magma, Sage, TeX

C_4.D_{24}
% in TeX

G:=Group("C4.D24");
// GroupNames label

G:=SmallGroup(192,44);
// by ID

G=gap.SmallGroup(192,44);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,422,100,1123,794,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^4=b^24=1,c^2=a,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations

׿
×
𝔽