Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C2xC4

Direct product G=NxQ with N=C4xS3 and Q=C2xC4
dρLabelID
S3xC2xC4296S3xC2xC4^2192,1030

Semidirect products G=N:Q with N=C4xS3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C4xS3):1(C2xC4) = C6.82+ 1+4φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3):1(C2xC4)192,1063
(C4xS3):2(C2xC4) = C42.91D6φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3):2(C2xC4)192,1082
(C4xS3):3(C2xC4) = C42:13D6φ: C2xC4/C2C22 ⊆ Out C4xS348(C4xS3):3(C2xC4)192,1104
(C4xS3):4(C2xC4) = C42.108D6φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3):4(C2xC4)192,1105
(C4xS3):5(C2xC4) = C42.126D6φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3):5(C2xC4)192,1133
(C4xS3):6(C2xC4) = C4xD4:2S3φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3):6(C2xC4)192,1095
(C4xS3):7(C2xC4) = C4xS3xD4φ: C2xC4/C4C2 ⊆ Out C4xS348(C4xS3):7(C2xC4)192,1103
(C4xS3):8(C2xC4) = C4xQ8:3S3φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3):8(C2xC4)192,1132
(C4xS3):9(C2xC4) = C4xC4oD12φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3):9(C2xC4)192,1033
(C4xS3):10(C2xC4) = C42.188D6φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3):10(C2xC4)192,1081
(C4xS3):11(C2xC4) = C2xS3xC4:C4φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3):11(C2xC4)192,1060
(C4xS3):12(C2xC4) = C2xC4:C4:7S3φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3):12(C2xC4)192,1061
(C4xS3):13(C2xC4) = C2xC42:2S3φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3):13(C2xC4)192,1031
(C4xS3):14(C2xC4) = S3xC42:C2φ: C2xC4/C22C2 ⊆ Out C4xS348(C4xS3):14(C2xC4)192,1079

Non-split extensions G=N.Q with N=C4xS3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C4xS3).1(C2xC4) = C4:C4:19D6φ: C2xC4/C2C22 ⊆ Out C4xS348(C4xS3).1(C2xC4)192,329
(C4xS3).2(C2xC4) = D4:(C4xS3)φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).2(C2xC4)192,330
(C4xS3).3(C2xC4) = (S3xQ8):C4φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).3(C2xC4)192,361
(C4xS3).4(C2xC4) = Q8:7(C4xS3)φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).4(C2xC4)192,362
(C4xS3).5(C2xC4) = C42:3D6φ: C2xC4/C2C22 ⊆ Out C4xS3484(C4xS3).5(C2xC4)192,380
(C4xS3).6(C2xC4) = C8:(C4xS3)φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).6(C2xC4)192,420
(C4xS3).7(C2xC4) = C8:S3:C4φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).7(C2xC4)192,440
(C4xS3).8(C2xC4) = M4(2).25D6φ: C2xC4/C2C22 ⊆ Out C4xS3484(C4xS3).8(C2xC4)192,452
(C4xS3).9(C2xC4) = C42.125D6φ: C2xC4/C2C22 ⊆ Out C4xS396(C4xS3).9(C2xC4)192,1131
(C4xS3).10(C2xC4) = M4(2):26D6φ: C2xC4/C2C22 ⊆ Out C4xS3484(C4xS3).10(C2xC4)192,1304
(C4xS3).11(C2xC4) = M4(2):28D6φ: C2xC4/C2C22 ⊆ Out C4xS3484(C4xS3).11(C2xC4)192,1309
(C4xS3).12(C2xC4) = S3xD4:C4φ: C2xC4/C4C2 ⊆ Out C4xS348(C4xS3).12(C2xC4)192,328
(C4xS3).13(C2xC4) = D4:2S3:C4φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).13(C2xC4)192,331
(C4xS3).14(C2xC4) = S3xQ8:C4φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).14(C2xC4)192,360
(C4xS3).15(C2xC4) = C4:C4.150D6φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).15(C2xC4)192,363
(C4xS3).16(C2xC4) = S3xC4wrC2φ: C2xC4/C4C2 ⊆ Out C4xS3244(C4xS3).16(C2xC4)192,379
(C4xS3).17(C2xC4) = C4xS3xQ8φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).17(C2xC4)192,1130
(C4xS3).18(C2xC4) = S3xC8oD4φ: C2xC4/C4C2 ⊆ Out C4xS3484(C4xS3).18(C2xC4)192,1308
(C4xS3).19(C2xC4) = C4xC8:S3φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).19(C2xC4)192,246
(C4xS3).20(C2xC4) = Dic3:5M4(2)φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).20(C2xC4)192,266
(C4xS3).21(C2xC4) = D12.4C8φ: C2xC4/C4C2 ⊆ Out C4xS3962(C4xS3).21(C2xC4)192,460
(C4xS3).22(C2xC4) = C16.12D6φ: C2xC4/C4C2 ⊆ Out C4xS3964(C4xS3).22(C2xC4)192,466
(C4xS3).23(C2xC4) = C2xC8oD12φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).23(C2xC4)192,1297
(C4xS3).24(C2xC4) = C2xD12.C4φ: C2xC4/C4C2 ⊆ Out C4xS396(C4xS3).24(C2xC4)192,1303
(C4xS3).25(C2xC4) = S3xC4.Q8φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).25(C2xC4)192,418
(C4xS3).26(C2xC4) = (S3xC8):C4φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).26(C2xC4)192,419
(C4xS3).27(C2xC4) = S3xC2.D8φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).27(C2xC4)192,438
(C4xS3).28(C2xC4) = C8.27(C4xS3)φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).28(C2xC4)192,439
(C4xS3).29(C2xC4) = S3xC8.C4φ: C2xC4/C22C2 ⊆ Out C4xS3484(C4xS3).29(C2xC4)192,451
(C4xS3).30(C2xC4) = C2xS3xM4(2)φ: C2xC4/C22C2 ⊆ Out C4xS348(C4xS3).30(C2xC4)192,1302
(C4xS3).31(C2xC4) = D6.C42φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).31(C2xC4)192,248
(C4xS3).32(C2xC4) = D6.4C42φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).32(C2xC4)192,267
(C4xS3).33(C2xC4) = C2xD6.C8φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).33(C2xC4)192,459
(C4xS3).34(C2xC4) = S3xM5(2)φ: C2xC4/C22C2 ⊆ Out C4xS3484(C4xS3).34(C2xC4)192,465
(C4xS3).35(C2xC4) = C22xC8:S3φ: C2xC4/C22C2 ⊆ Out C4xS396(C4xS3).35(C2xC4)192,1296
(C4xS3).36(C2xC4) = S3xC4xC8φ: trivial image96(C4xS3).36(C2xC4)192,243
(C4xS3).37(C2xC4) = S3xC8:C4φ: trivial image96(C4xS3).37(C2xC4)192,263
(C4xS3).38(C2xC4) = S3xC2xC16φ: trivial image96(C4xS3).38(C2xC4)192,458
(C4xS3).39(C2xC4) = S3xC22xC8φ: trivial image96(C4xS3).39(C2xC4)192,1295

׿
x
:
Z
F
o
wr
Q
<