Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C2×C4

Direct product G=N×Q with N=C4×S3 and Q=C2×C4
dρLabelID
S3×C2×C4296S3xC2xC4^2192,1030

Semidirect products G=N:Q with N=C4×S3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1(C2×C4) = C6.82+ 1+4φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3):1(C2xC4)192,1063
(C4×S3)⋊2(C2×C4) = C42.91D6φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3):2(C2xC4)192,1082
(C4×S3)⋊3(C2×C4) = C4213D6φ: C2×C4/C2C22 ⊆ Out C4×S348(C4xS3):3(C2xC4)192,1104
(C4×S3)⋊4(C2×C4) = C42.108D6φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3):4(C2xC4)192,1105
(C4×S3)⋊5(C2×C4) = C42.126D6φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3):5(C2xC4)192,1133
(C4×S3)⋊6(C2×C4) = C4×D42S3φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3):6(C2xC4)192,1095
(C4×S3)⋊7(C2×C4) = C4×S3×D4φ: C2×C4/C4C2 ⊆ Out C4×S348(C4xS3):7(C2xC4)192,1103
(C4×S3)⋊8(C2×C4) = C4×Q83S3φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3):8(C2xC4)192,1132
(C4×S3)⋊9(C2×C4) = C4×C4○D12φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3):9(C2xC4)192,1033
(C4×S3)⋊10(C2×C4) = C42.188D6φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3):10(C2xC4)192,1081
(C4×S3)⋊11(C2×C4) = C2×S3×C4⋊C4φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3):11(C2xC4)192,1060
(C4×S3)⋊12(C2×C4) = C2×C4⋊C47S3φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3):12(C2xC4)192,1061
(C4×S3)⋊13(C2×C4) = C2×C422S3φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3):13(C2xC4)192,1031
(C4×S3)⋊14(C2×C4) = S3×C42⋊C2φ: C2×C4/C22C2 ⊆ Out C4×S348(C4xS3):14(C2xC4)192,1079

Non-split extensions G=N.Q with N=C4×S3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C4×S3).1(C2×C4) = C4⋊C419D6φ: C2×C4/C2C22 ⊆ Out C4×S348(C4xS3).1(C2xC4)192,329
(C4×S3).2(C2×C4) = D4⋊(C4×S3)φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).2(C2xC4)192,330
(C4×S3).3(C2×C4) = (S3×Q8)⋊C4φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).3(C2xC4)192,361
(C4×S3).4(C2×C4) = Q87(C4×S3)φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).4(C2xC4)192,362
(C4×S3).5(C2×C4) = C423D6φ: C2×C4/C2C22 ⊆ Out C4×S3484(C4xS3).5(C2xC4)192,380
(C4×S3).6(C2×C4) = C8⋊(C4×S3)φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).6(C2xC4)192,420
(C4×S3).7(C2×C4) = C8⋊S3⋊C4φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).7(C2xC4)192,440
(C4×S3).8(C2×C4) = M4(2).25D6φ: C2×C4/C2C22 ⊆ Out C4×S3484(C4xS3).8(C2xC4)192,452
(C4×S3).9(C2×C4) = C42.125D6φ: C2×C4/C2C22 ⊆ Out C4×S396(C4xS3).9(C2xC4)192,1131
(C4×S3).10(C2×C4) = M4(2)⋊26D6φ: C2×C4/C2C22 ⊆ Out C4×S3484(C4xS3).10(C2xC4)192,1304
(C4×S3).11(C2×C4) = M4(2)⋊28D6φ: C2×C4/C2C22 ⊆ Out C4×S3484(C4xS3).11(C2xC4)192,1309
(C4×S3).12(C2×C4) = S3×D4⋊C4φ: C2×C4/C4C2 ⊆ Out C4×S348(C4xS3).12(C2xC4)192,328
(C4×S3).13(C2×C4) = D42S3⋊C4φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).13(C2xC4)192,331
(C4×S3).14(C2×C4) = S3×Q8⋊C4φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).14(C2xC4)192,360
(C4×S3).15(C2×C4) = C4⋊C4.150D6φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).15(C2xC4)192,363
(C4×S3).16(C2×C4) = S3×C4≀C2φ: C2×C4/C4C2 ⊆ Out C4×S3244(C4xS3).16(C2xC4)192,379
(C4×S3).17(C2×C4) = C4×S3×Q8φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).17(C2xC4)192,1130
(C4×S3).18(C2×C4) = S3×C8○D4φ: C2×C4/C4C2 ⊆ Out C4×S3484(C4xS3).18(C2xC4)192,1308
(C4×S3).19(C2×C4) = C4×C8⋊S3φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).19(C2xC4)192,246
(C4×S3).20(C2×C4) = Dic35M4(2)φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).20(C2xC4)192,266
(C4×S3).21(C2×C4) = D12.4C8φ: C2×C4/C4C2 ⊆ Out C4×S3962(C4xS3).21(C2xC4)192,460
(C4×S3).22(C2×C4) = C16.12D6φ: C2×C4/C4C2 ⊆ Out C4×S3964(C4xS3).22(C2xC4)192,466
(C4×S3).23(C2×C4) = C2×C8○D12φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).23(C2xC4)192,1297
(C4×S3).24(C2×C4) = C2×D12.C4φ: C2×C4/C4C2 ⊆ Out C4×S396(C4xS3).24(C2xC4)192,1303
(C4×S3).25(C2×C4) = S3×C4.Q8φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).25(C2xC4)192,418
(C4×S3).26(C2×C4) = (S3×C8)⋊C4φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).26(C2xC4)192,419
(C4×S3).27(C2×C4) = S3×C2.D8φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).27(C2xC4)192,438
(C4×S3).28(C2×C4) = C8.27(C4×S3)φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).28(C2xC4)192,439
(C4×S3).29(C2×C4) = S3×C8.C4φ: C2×C4/C22C2 ⊆ Out C4×S3484(C4xS3).29(C2xC4)192,451
(C4×S3).30(C2×C4) = C2×S3×M4(2)φ: C2×C4/C22C2 ⊆ Out C4×S348(C4xS3).30(C2xC4)192,1302
(C4×S3).31(C2×C4) = D6.C42φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).31(C2xC4)192,248
(C4×S3).32(C2×C4) = D6.4C42φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).32(C2xC4)192,267
(C4×S3).33(C2×C4) = C2×D6.C8φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).33(C2xC4)192,459
(C4×S3).34(C2×C4) = S3×M5(2)φ: C2×C4/C22C2 ⊆ Out C4×S3484(C4xS3).34(C2xC4)192,465
(C4×S3).35(C2×C4) = C22×C8⋊S3φ: C2×C4/C22C2 ⊆ Out C4×S396(C4xS3).35(C2xC4)192,1296
(C4×S3).36(C2×C4) = S3×C4×C8φ: trivial image96(C4xS3).36(C2xC4)192,243
(C4×S3).37(C2×C4) = S3×C8⋊C4φ: trivial image96(C4xS3).37(C2xC4)192,263
(C4×S3).38(C2×C4) = S3×C2×C16φ: trivial image96(C4xS3).38(C2xC4)192,458
(C4×S3).39(C2×C4) = S3×C22×C8φ: trivial image96(C4xS3).39(C2xC4)192,1295

׿
×
𝔽