Copied to
clipboard

G = SL2(𝔽3)⋊D4order 192 = 26·3

2nd semidirect product of SL2(𝔽3) and D4 acting via D4/C22=C2

non-abelian, soluble

Aliases: SL2(𝔽3)⋊3D4, (C2×C4).7S4, Q8⋊Dic32C2, (C2×Q8).19D6, C22.41(C2×S4), Q8.3(C3⋊D4), C2.7(C4.6S4), C2.5(C4.3S4), (C2×GL2(𝔽3))⋊6C2, C2.11(A4⋊D4), (C2×SL2(𝔽3)).19C22, (C2×C4.A4)⋊1C2, (C2×C4○D4)⋊1S3, SmallGroup(192,986)

Series: Derived Chief Lower central Upper central

C1C2Q8C2×SL2(𝔽3) — SL2(𝔽3)⋊D4
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)C2×GL2(𝔽3) — SL2(𝔽3)⋊D4
SL2(𝔽3)C2×SL2(𝔽3) — SL2(𝔽3)⋊D4
C1C22C2×C4

Generators and relations for SL2(𝔽3)⋊D4
 G = < a,b,c,d,e | a4=c3=d4=e2=1, b2=a2, bab-1=ebe=a-1, cac-1=dad-1=b, eae=a2b, cbc-1=ab, dbd-1=a, dcd-1=ac-1, ece=c-1, ede=d-1 >

Subgroups: 397 in 83 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, SL2(𝔽3), C2×Dic3, C2×C12, C22×S3, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, D6⋊C4, GL2(𝔽3), C2×SL2(𝔽3), C4.A4, D4⋊D4, Q8⋊Dic3, C2×GL2(𝔽3), C2×C4.A4, SL2(𝔽3)⋊D4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊D4, S4, C2×S4, C4.6S4, C4.3S4, A4⋊D4, SL2(𝔽3)⋊D4

Character table of SL2(𝔽3)⋊D4

 class 12A2B2C2D2E34A4B4C4D4E6A6B6C8A8B8C8D12A12B12C12D
 size 111112248226624888121212128888
ρ111111111111111111111111    trivial
ρ21111-1-11-1-11111111-11-1-1-1-1-1    linear of order 2
ρ311111-111111-1111-1-1-1-11111    linear of order 2
ρ41111-111-1-111-1111-11-11-1-1-1-1    linear of order 2
ρ5222220-122220-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ62222-20-1-2-2220-1-1-100001111    orthogonal lifted from D6
ρ722-2-200200-2202-2-200000000    orthogonal lifted from D4
ρ822-2-200-100-220-1110000-3-3--3--3    complex lifted from C3⋊D4
ρ922-2-200-100-220-1110000--3--3-3-3    complex lifted from C3⋊D4
ρ102-22-200-1-2i2i0001-11-2--22-2-ii-ii    complex lifted from C4.6S4
ρ112-22-200-1-2i2i0001-112-2-2--2-ii-ii    complex lifted from C4.6S4
ρ122-22-200-12i-2i0001-11-2-22--2i-ii-i    complex lifted from C4.6S4
ρ132-22-200-12i-2i0001-112--2-2-2i-ii-i    complex lifted from C4.6S4
ρ1433331-10-3-3-1-11000-11-110000    orthogonal lifted from C2×S4
ρ153333-1-1033-1-1-100011110000    orthogonal lifted from S4
ρ163333110-3-3-1-1-10001-11-10000    orthogonal lifted from C2×S4
ρ173333-11033-1-11000-1-1-1-10000    orthogonal lifted from S4
ρ184-4-4400-20000022-200000000    orthogonal lifted from C4.3S4
ρ194-4-4400100000-1-110000-333-3    orthogonal lifted from C4.3S4
ρ204-4-4400100000-1-1100003-3-33    orthogonal lifted from C4.3S4
ρ214-44-40014i-4i000-11-10000-ii-ii    complex lifted from C4.6S4
ρ224-44-4001-4i4i000-11-10000i-ii-i    complex lifted from C4.6S4
ρ2366-6-6000002-2000000000000    orthogonal lifted from A4⋊D4

Smallest permutation representation of SL2(𝔽3)⋊D4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5 3 7)(2 8 4 6)(9 15 11 13)(10 14 12 16)(17 23 19 21)(18 22 20 24)(25 31 27 29)(26 30 28 32)
(2 8 5)(4 6 7)(10 14 15)(12 16 13)(18 22 23)(20 24 21)(26 30 31)(28 32 29)
(1 22 9 32)(2 20 10 26)(3 24 11 30)(4 18 12 28)(5 23 15 29)(6 19 16 25)(7 21 13 31)(8 17 14 27)
(2 7)(4 5)(6 8)(10 13)(12 15)(14 16)(17 25)(18 29)(19 27)(20 31)(21 26)(22 32)(23 28)(24 30)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5,3,7)(2,8,4,6)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,8,5)(4,6,7)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29), (1,22,9,32)(2,20,10,26)(3,24,11,30)(4,18,12,28)(5,23,15,29)(6,19,16,25)(7,21,13,31)(8,17,14,27), (2,7)(4,5)(6,8)(10,13)(12,15)(14,16)(17,25)(18,29)(19,27)(20,31)(21,26)(22,32)(23,28)(24,30)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5,3,7)(2,8,4,6)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,8,5)(4,6,7)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29), (1,22,9,32)(2,20,10,26)(3,24,11,30)(4,18,12,28)(5,23,15,29)(6,19,16,25)(7,21,13,31)(8,17,14,27), (2,7)(4,5)(6,8)(10,13)(12,15)(14,16)(17,25)(18,29)(19,27)(20,31)(21,26)(22,32)(23,28)(24,30) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5,3,7),(2,8,4,6),(9,15,11,13),(10,14,12,16),(17,23,19,21),(18,22,20,24),(25,31,27,29),(26,30,28,32)], [(2,8,5),(4,6,7),(10,14,15),(12,16,13),(18,22,23),(20,24,21),(26,30,31),(28,32,29)], [(1,22,9,32),(2,20,10,26),(3,24,11,30),(4,18,12,28),(5,23,15,29),(6,19,16,25),(7,21,13,31),(8,17,14,27)], [(2,7),(4,5),(6,8),(10,13),(12,15),(14,16),(17,25),(18,29),(19,27),(20,31),(21,26),(22,32),(23,28),(24,30)]])

Matrix representation of SL2(𝔽3)⋊D4 in GL4(𝔽73) generated by

1000
0100
005340
002120
,
1000
0100
004152
002132
,
1000
0100
00721
00720
,
07200
1000
002961
005844
,
1000
07200
00721
0001
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,53,21,0,0,40,20],[1,0,0,0,0,1,0,0,0,0,41,21,0,0,52,32],[1,0,0,0,0,1,0,0,0,0,72,72,0,0,1,0],[0,1,0,0,72,0,0,0,0,0,29,58,0,0,61,44],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,1,1] >;

SL2(𝔽3)⋊D4 in GAP, Magma, Sage, TeX

{\rm SL}_2({\mathbb F}_3)\rtimes D_4
% in TeX

G:=Group("SL(2,3):D4");
// GroupNames label

G:=SmallGroup(192,986);
// by ID

G=gap.SmallGroup(192,986);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,85,680,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^4=e^2=1,b^2=a^2,b*a*b^-1=e*b*e=a^-1,c*a*c^-1=d*a*d^-1=b,e*a*e=a^2*b,c*b*c^-1=a*b,d*b*d^-1=a,d*c*d^-1=a*c^-1,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

Export

Character table of SL2(𝔽3)⋊D4 in TeX

׿
×
𝔽