Copied to
clipboard

G = C2xC4.6S4order 192 = 26·3

Direct product of C2 and C4.6S4

direct product, non-abelian, soluble

Aliases: C2xC4.6S4, GL2(F3):6C22, CSU2(F3):6C22, SL2(F3).4C23, C4oD4:2D6, C4.35(C2xS4), (C2xC4).27S4, C4.A4:4C22, (C2xQ8).22D6, C22.29(C2xS4), C2.14(C22xS4), Q8.4(C22xS3), (C2xGL2(F3)):7C2, (C2xCSU2(F3)):7C2, (C2xSL2(F3)).22C22, (C2xC4oD4):2S3, (C2xC4.A4):6C2, SmallGroup(192,1480)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — C2xC4.6S4
C1C2Q8SL2(F3)GL2(F3)C2xGL2(F3) — C2xC4.6S4
SL2(F3) — C2xC4.6S4
C1C2xC4

Generators and relations for C2xC4.6S4
 G = < a,b,c,d,e,f | a2=b4=e3=f2=1, c2=d2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=b2c, ece-1=b2cd, fcf=cd, ede-1=c, fdf=b2d, fef=e-1 >

Subgroups: 539 in 153 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C2xC8, D8, SD16, Q16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, SL2(F3), C4xS3, C2xDic3, C2xC12, C22xS3, C22xC8, C2xD8, C2xSD16, C2xQ16, C4oD8, C2xC4oD4, C2xC4oD4, CSU2(F3), GL2(F3), C2xSL2(F3), C4.A4, S3xC2xC4, C2xC4oD8, C2xCSU2(F3), C2xGL2(F3), C4.6S4, C2xC4.A4, C2xC4.6S4
Quotients: C1, C2, C22, S3, C23, D6, S4, C22xS3, C2xS4, C4.6S4, C22xS4, C2xC4.6S4

Smallest permutation representation of C2xC4.6S4
On 32 points
Generators in S32
(1 25)(2 26)(3 27)(4 28)(5 23)(6 24)(7 21)(8 22)(9 17)(10 18)(11 19)(12 20)(13 31)(14 32)(15 29)(16 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 13 3 15)(2 14 4 16)(5 20 7 18)(6 17 8 19)(9 22 11 24)(10 23 12 21)(25 31 27 29)(26 32 28 30)
(1 17 3 19)(2 18 4 20)(5 14 7 16)(6 15 8 13)(9 27 11 25)(10 28 12 26)(21 30 23 32)(22 31 24 29)
(5 14 18)(6 15 19)(7 16 20)(8 13 17)(9 22 31)(10 23 32)(11 24 29)(12 21 30)
(5 16)(6 13)(7 14)(8 15)(9 11)(10 12)(17 19)(18 20)(21 32)(22 29)(23 30)(24 31)

G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,23)(6,24)(7,21)(8,22)(9,17)(10,18)(11,19)(12,20)(13,31)(14,32)(15,29)(16,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,13,3,15)(2,14,4,16)(5,20,7,18)(6,17,8,19)(9,22,11,24)(10,23,12,21)(25,31,27,29)(26,32,28,30), (1,17,3,19)(2,18,4,20)(5,14,7,16)(6,15,8,13)(9,27,11,25)(10,28,12,26)(21,30,23,32)(22,31,24,29), (5,14,18)(6,15,19)(7,16,20)(8,13,17)(9,22,31)(10,23,32)(11,24,29)(12,21,30), (5,16)(6,13)(7,14)(8,15)(9,11)(10,12)(17,19)(18,20)(21,32)(22,29)(23,30)(24,31)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,23)(6,24)(7,21)(8,22)(9,17)(10,18)(11,19)(12,20)(13,31)(14,32)(15,29)(16,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,13,3,15)(2,14,4,16)(5,20,7,18)(6,17,8,19)(9,22,11,24)(10,23,12,21)(25,31,27,29)(26,32,28,30), (1,17,3,19)(2,18,4,20)(5,14,7,16)(6,15,8,13)(9,27,11,25)(10,28,12,26)(21,30,23,32)(22,31,24,29), (5,14,18)(6,15,19)(7,16,20)(8,13,17)(9,22,31)(10,23,32)(11,24,29)(12,21,30), (5,16)(6,13)(7,14)(8,15)(9,11)(10,12)(17,19)(18,20)(21,32)(22,29)(23,30)(24,31) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,23),(6,24),(7,21),(8,22),(9,17),(10,18),(11,19),(12,20),(13,31),(14,32),(15,29),(16,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,13,3,15),(2,14,4,16),(5,20,7,18),(6,17,8,19),(9,22,11,24),(10,23,12,21),(25,31,27,29),(26,32,28,30)], [(1,17,3,19),(2,18,4,20),(5,14,7,16),(6,15,8,13),(9,27,11,25),(10,28,12,26),(21,30,23,32),(22,31,24,29)], [(5,14,18),(6,15,19),(7,16,20),(8,13,17),(9,22,31),(10,23,32),(11,24,29),(12,21,30)], [(5,16),(6,13),(7,14),(8,15),(9,11),(10,12),(17,19),(18,20),(21,32),(22,29),(23,30),(24,31)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C8A···8H12A12B12C12D
order122222223444444446668···812121212
size1111661212811116612128886···68888

32 irreducible representations

dim1111122223334
type+++++++++++
imageC1C2C2C2C2S3D6D6C4.6S4S4C2xS4C2xS4C4.6S4
kernelC2xC4.6S4C2xCSU2(F3)C2xGL2(F3)C4.6S4C2xC4.A4C2xC4oD4C2xQ8C4oD4C2C2xC4C4C22C2
# reps1114111282424

Matrix representation of C2xC4.6S4 in GL4(F73) generated by

72000
07200
00720
00072
,
1000
0100
00270
00027
,
1000
0100
002033
005253
,
1000
0100
005352
003320
,
07200
17200
002020
004152
,
0100
1000
00172
00072
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,27,0,0,0,0,27],[1,0,0,0,0,1,0,0,0,0,20,52,0,0,33,53],[1,0,0,0,0,1,0,0,0,0,53,33,0,0,52,20],[0,1,0,0,72,72,0,0,0,0,20,41,0,0,20,52],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,72,72] >;

C2xC4.6S4 in GAP, Magma, Sage, TeX

C_2\times C_4._6S_4
% in TeX

G:=Group("C2xC4.6S4");
// GroupNames label

G:=SmallGroup(192,1480);
// by ID

G=gap.SmallGroup(192,1480);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=e^3=f^2=1,c^2=d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f=c*d,e*d*e^-1=c,f*d*f=b^2*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<