Copied to
clipboard

G = C2xD6:D4order 192 = 26·3

Direct product of C2 and D6:D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD6:D4, C23:6D12, C24.65D6, C6:1C22wrC2, D6:10(C2xD4), (C22xC6):9D4, (S3xC24):1C2, (C2xC12):3C23, C22:C4:37D6, C22:4(C2xD12), (C22xC4):10D6, C6.6(C22xD4), D6:C4:44C22, (C22xD12):5C2, (C22xS3):13D4, (C2xC6).31C24, C2.8(C22xD12), (C2xD12):43C22, (C22xS3):1C23, (S3xC23):3C22, (C22xC12):7C22, (C2xDic3):1C23, C22.125(S3xD4), C22.70(S3xC23), (C23xC6).57C22, (C22xC6).123C23, C23.156(C22xS3), (C22xDic3):6C22, C2.8(C2xS3xD4), (C2xC6):4(C2xD4), C3:1(C2xC22wrC2), (C2xD6:C4):16C2, (C2xC4):3(C22xS3), (C2xC22:C4):10S3, (C6xC22:C4):13C2, (C22xC3:D4):3C2, (C2xC3:D4):34C22, (C3xC22:C4):46C22, SmallGroup(192,1046)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C2xD6:D4
C1C3C6C2xC6C22xS3S3xC23S3xC24 — C2xD6:D4
C3C2xC6 — C2xD6:D4
C1C23C2xC22:C4

Generators and relations for C2xD6:D4
 G = < a,b,c,d,e | a2=b6=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b3c, ece=bc, ede=d-1 >

Subgroups: 2088 in 662 conjugacy classes, 143 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C22xC4, C22xC4, C2xD4, C24, C24, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22xC6, C22xC6, C2xC22:C4, C2xC22:C4, C22wrC2, C22xD4, C25, D6:C4, C3xC22:C4, C2xD12, C2xD12, C22xDic3, C2xC3:D4, C2xC3:D4, C22xC12, S3xC23, S3xC23, S3xC23, C23xC6, C2xC22wrC2, D6:D4, C2xD6:C4, C6xC22:C4, C22xD12, C22xC3:D4, S3xC24, C2xD6:D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, D12, C22xS3, C22wrC2, C22xD4, C2xD12, S3xD4, S3xC23, C2xC22wrC2, D6:D4, C22xD12, C2xS3xD4, C2xD6:D4

Smallest permutation representation of C2xD6:D4
On 48 points
Generators in S48
(1 40)(2 41)(3 42)(4 37)(5 38)(6 39)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(13 33)(14 34)(15 35)(16 36)(17 31)(18 32)(25 47)(26 48)(27 43)(28 44)(29 45)(30 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 18)(7 47)(8 46)(9 45)(10 44)(11 43)(12 48)(19 25)(20 30)(21 29)(22 28)(23 27)(24 26)(31 40)(32 39)(33 38)(34 37)(35 42)(36 41)
(1 44 18 8)(2 45 13 9)(3 46 14 10)(4 47 15 11)(5 48 16 12)(6 43 17 7)(19 39 27 31)(20 40 28 32)(21 41 29 33)(22 42 30 34)(23 37 25 35)(24 38 26 36)
(1 25)(2 30)(3 29)(4 28)(5 27)(6 26)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 22)(14 21)(15 20)(16 19)(17 24)(18 23)(37 44)(38 43)(39 48)(40 47)(41 46)(42 45)

G:=sub<Sym(48)| (1,40)(2,41)(3,42)(4,37)(5,38)(6,39)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17)(2,16)(3,15)(4,14)(5,13)(6,18)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(19,25)(20,30)(21,29)(22,28)(23,27)(24,26)(31,40)(32,39)(33,38)(34,37)(35,42)(36,41), (1,44,18,8)(2,45,13,9)(3,46,14,10)(4,47,15,11)(5,48,16,12)(6,43,17,7)(19,39,27,31)(20,40,28,32)(21,41,29,33)(22,42,30,34)(23,37,25,35)(24,38,26,36), (1,25)(2,30)(3,29)(4,28)(5,27)(6,26)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,22)(14,21)(15,20)(16,19)(17,24)(18,23)(37,44)(38,43)(39,48)(40,47)(41,46)(42,45)>;

G:=Group( (1,40)(2,41)(3,42)(4,37)(5,38)(6,39)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17)(2,16)(3,15)(4,14)(5,13)(6,18)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(19,25)(20,30)(21,29)(22,28)(23,27)(24,26)(31,40)(32,39)(33,38)(34,37)(35,42)(36,41), (1,44,18,8)(2,45,13,9)(3,46,14,10)(4,47,15,11)(5,48,16,12)(6,43,17,7)(19,39,27,31)(20,40,28,32)(21,41,29,33)(22,42,30,34)(23,37,25,35)(24,38,26,36), (1,25)(2,30)(3,29)(4,28)(5,27)(6,26)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,22)(14,21)(15,20)(16,19)(17,24)(18,23)(37,44)(38,43)(39,48)(40,47)(41,46)(42,45) );

G=PermutationGroup([[(1,40),(2,41),(3,42),(4,37),(5,38),(6,39),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(13,33),(14,34),(15,35),(16,36),(17,31),(18,32),(25,47),(26,48),(27,43),(28,44),(29,45),(30,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,18),(7,47),(8,46),(9,45),(10,44),(11,43),(12,48),(19,25),(20,30),(21,29),(22,28),(23,27),(24,26),(31,40),(32,39),(33,38),(34,37),(35,42),(36,41)], [(1,44,18,8),(2,45,13,9),(3,46,14,10),(4,47,15,11),(5,48,16,12),(6,43,17,7),(19,39,27,31),(20,40,28,32),(21,41,29,33),(22,42,30,34),(23,37,25,35),(24,38,26,36)], [(1,25),(2,30),(3,29),(4,28),(5,27),(6,26),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,22),(14,21),(15,20),(16,19),(17,24),(18,23),(37,44),(38,43),(39,48),(40,47),(41,46),(42,45)]])

48 conjugacy classes

class 1 2A···2G2H2I2J2K2L···2S2T2U 3 4A4B4C4D4E4F6A···6G6H6I6J6K12A···12H
order12···222222···22234444446···6666612···12
size11···122226···612122444412122···244444···4

48 irreducible representations

dim111111122222224
type+++++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D6D6D6D12S3xD4
kernelC2xD6:D4D6:D4C2xD6:C4C6xC22:C4C22xD12C22xC3:D4S3xC24C2xC22:C4C22xS3C22xC6C22:C4C22xC4C24C23C22
# reps182121118442184

Matrix representation of C2xD6:D4 in GL5(F13)

120000
01000
00100
00010
00001
,
10000
001200
01100
00010
00001
,
10000
00100
01000
000120
000012
,
10000
03600
071000
000012
00010
,
10000
03600
031000
00001
00010

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,3,7,0,0,0,6,10,0,0,0,0,0,0,1,0,0,0,12,0],[1,0,0,0,0,0,3,3,0,0,0,6,10,0,0,0,0,0,0,1,0,0,0,1,0] >;

C2xD6:D4 in GAP, Magma, Sage, TeX

C_2\times D_6\rtimes D_4
% in TeX

G:=Group("C2xD6:D4");
// GroupNames label

G:=SmallGroup(192,1046);
// by ID

G=gap.SmallGroup(192,1046);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,297,80,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^3*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<