Extensions 1→N→G→Q→1 with N=D6 and Q=C2xD4

Direct product G=NxQ with N=D6 and Q=C2xD4
dρLabelID
C22xS3xD448C2^2xS3xD4192,1514

Semidirect products G=N:Q with N=D6 and Q=C2xD4
extensionφ:Q→Out NdρLabelID
D6:1(C2xD4) = C2xDic3:D4φ: C2xD4/C2xC4C2 ⊆ Out D696D6:1(C2xD4)192,1048
D6:2(C2xD4) = C2xC12:D4φ: C2xD4/C2xC4C2 ⊆ Out D696D6:2(C2xD4)192,1065
D6:3(C2xD4) = S3xC4:D4φ: C2xD4/C2xC4C2 ⊆ Out D648D6:3(C2xD4)192,1163
D6:4(C2xD4) = C2xD6:3D4φ: C2xD4/C2xC4C2 ⊆ Out D696D6:4(C2xD4)192,1359
D6:5(C2xD4) = D4xD12φ: C2xD4/D4C2 ⊆ Out D648D6:5(C2xD4)192,1108
D6:6(C2xD4) = C24:8D6φ: C2xD4/D4C2 ⊆ Out D648D6:6(C2xD4)192,1149
D6:7(C2xD4) = D12:19D4φ: C2xD4/D4C2 ⊆ Out D648D6:7(C2xD4)192,1168
D6:8(C2xD4) = D12:11D4φ: C2xD4/D4C2 ⊆ Out D648D6:8(C2xD4)192,1276
D6:9(C2xD4) = D4xC3:D4φ: C2xD4/D4C2 ⊆ Out D648D6:9(C2xD4)192,1360
D6:10(C2xD4) = C2xD6:D4φ: C2xD4/C23C2 ⊆ Out D648D6:10(C2xD4)192,1046
D6:11(C2xD4) = S3xC22wrC2φ: C2xD4/C23C2 ⊆ Out D624D6:11(C2xD4)192,1147
D6:12(C2xD4) = C2xC23:2D6φ: C2xD4/C23C2 ⊆ Out D648D6:12(C2xD4)192,1358

Non-split extensions G=N.Q with N=D6 and Q=C2xD4
extensionφ:Q→Out NdρLabelID
D6.1(C2xD4) = C42.228D6φ: C2xD4/C2xC4C2 ⊆ Out D696D6.1(C2xD4)192,1107
D6.2(C2xD4) = C24:7D6φ: C2xD4/C2xC4C2 ⊆ Out D648D6.2(C2xD4)192,1148
D6.3(C2xD4) = C6.722- 1+4φ: C2xD4/C2xC4C2 ⊆ Out D696D6.3(C2xD4)192,1167
D6.4(C2xD4) = C6.172- 1+4φ: C2xD4/C2xC4C2 ⊆ Out D696D6.4(C2xD4)192,1188
D6.5(C2xD4) = C6.1202+ 1+4φ: C2xD4/C2xC4C2 ⊆ Out D648D6.5(C2xD4)192,1212
D6.6(C2xD4) = C42.233D6φ: C2xD4/C2xC4C2 ⊆ Out D696D6.6(C2xD4)192,1227
D6.7(C2xD4) = C42.238D6φ: C2xD4/C2xC4C2 ⊆ Out D696D6.7(C2xD4)192,1275
D6.8(C2xD4) = C42.240D6φ: C2xD4/C2xC4C2 ⊆ Out D696D6.8(C2xD4)192,1284
D6.9(C2xD4) = C2xD8:3S3φ: C2xD4/C2xC4C2 ⊆ Out D696D6.9(C2xD4)192,1315
D6.10(C2xD4) = C2xQ8.7D6φ: C2xD4/C2xC4C2 ⊆ Out D696D6.10(C2xD4)192,1320
D6.11(C2xD4) = C2xD24:C2φ: C2xD4/C2xC4C2 ⊆ Out D696D6.11(C2xD4)192,1324
D6.12(C2xD4) = C24.38D6φ: C2xD4/D4C2 ⊆ Out D648D6.12(C2xD4)192,1049
D6.13(C2xD4) = C6.2- 1+4φ: C2xD4/D4C2 ⊆ Out D696D6.13(C2xD4)192,1066
D6.14(C2xD4) = D12:23D4φ: C2xD4/D4C2 ⊆ Out D648D6.14(C2xD4)192,1109
D6.15(C2xD4) = D12:24D4φ: C2xD4/D4C2 ⊆ Out D696D6.15(C2xD4)192,1110
D6.16(C2xD4) = C24.44D6φ: C2xD4/D4C2 ⊆ Out D648D6.16(C2xD4)192,1150
D6.17(C2xD4) = C6.402+ 1+4φ: C2xD4/D4C2 ⊆ Out D648D6.17(C2xD4)192,1169
D6.18(C2xD4) = C6.732- 1+4φ: C2xD4/D4C2 ⊆ Out D696D6.18(C2xD4)192,1170
D6.19(C2xD4) = D12:20D4φ: C2xD4/D4C2 ⊆ Out D648D6.19(C2xD4)192,1171
D6.20(C2xD4) = D12:21D4φ: C2xD4/D4C2 ⊆ Out D648D6.20(C2xD4)192,1189
D6.21(C2xD4) = D12:22D4φ: C2xD4/D4C2 ⊆ Out D696D6.21(C2xD4)192,1190
D6.22(C2xD4) = C6.1212+ 1+4φ: C2xD4/D4C2 ⊆ Out D648D6.22(C2xD4)192,1213
D6.23(C2xD4) = C6.822- 1+4φ: C2xD4/D4C2 ⊆ Out D696D6.23(C2xD4)192,1214
D6.24(C2xD4) = D12:10D4φ: C2xD4/D4C2 ⊆ Out D648D6.24(C2xD4)192,1235
D6.25(C2xD4) = D12:12D4φ: C2xD4/D4C2 ⊆ Out D696D6.25(C2xD4)192,1285
D6.26(C2xD4) = D8:13D6φ: C2xD4/D4C2 ⊆ Out D6484D6.26(C2xD4)192,1316
D6.27(C2xD4) = SD16:13D6φ: C2xD4/D4C2 ⊆ Out D6484D6.27(C2xD4)192,1321
D6.28(C2xD4) = D12.30D4φ: C2xD4/D4C2 ⊆ Out D6964D6.28(C2xD4)192,1325
D6.29(C2xD4) = D8:15D6φ: C2xD4/D4C2 ⊆ Out D6484+D6.29(C2xD4)192,1328
D6.30(C2xD4) = D8:11D6φ: C2xD4/D4C2 ⊆ Out D6484D6.30(C2xD4)192,1329
D6.31(C2xD4) = D8.10D6φ: C2xD4/D4C2 ⊆ Out D6964-D6.31(C2xD4)192,1330
D6.32(C2xD4) = D8:5D6φ: C2xD4/D4C2 ⊆ Out D6488+D6.32(C2xD4)192,1333
D6.33(C2xD4) = D8:6D6φ: C2xD4/D4C2 ⊆ Out D6488-D6.33(C2xD4)192,1334
D6.34(C2xD4) = C24.C23φ: C2xD4/D4C2 ⊆ Out D6488+D6.34(C2xD4)192,1337
D6.35(C2xD4) = SD16.D6φ: C2xD4/D4C2 ⊆ Out D6968-D6.35(C2xD4)192,1338
D6.36(C2xD4) = C2xC23.9D6φ: C2xD4/C23C2 ⊆ Out D696D6.36(C2xD4)192,1047
D6.37(C2xD4) = C2xD6.D4φ: C2xD4/C23C2 ⊆ Out D696D6.37(C2xD4)192,1064
D6.38(C2xD4) = C42:14D6φ: C2xD4/C23C2 ⊆ Out D648D6.38(C2xD4)192,1106
D6.39(C2xD4) = C6.372+ 1+4φ: C2xD4/C23C2 ⊆ Out D648D6.39(C2xD4)192,1164
D6.40(C2xD4) = C4:C4:21D6φ: C2xD4/C23C2 ⊆ Out D648D6.40(C2xD4)192,1165
D6.41(C2xD4) = C6.382+ 1+4φ: C2xD4/C23C2 ⊆ Out D648D6.41(C2xD4)192,1166
D6.42(C2xD4) = C4:C4:26D6φ: C2xD4/C23C2 ⊆ Out D648D6.42(C2xD4)192,1186
D6.43(C2xD4) = C6.162- 1+4φ: C2xD4/C23C2 ⊆ Out D696D6.43(C2xD4)192,1187
D6.44(C2xD4) = S3xC22.D4φ: C2xD4/C23C2 ⊆ Out D648D6.44(C2xD4)192,1211
D6.45(C2xD4) = C42:20D6φ: C2xD4/C23C2 ⊆ Out D648D6.45(C2xD4)192,1233
D6.46(C2xD4) = C42.141D6φ: C2xD4/C23C2 ⊆ Out D696D6.46(C2xD4)192,1234
D6.47(C2xD4) = C42:28D6φ: C2xD4/C23C2 ⊆ Out D648D6.47(C2xD4)192,1274
D6.48(C2xD4) = C42.171D6φ: C2xD4/C23C2 ⊆ Out D696D6.48(C2xD4)192,1283
D6.49(C2xD4) = C2xD8:S3φ: C2xD4/C23C2 ⊆ Out D648D6.49(C2xD4)192,1314
D6.50(C2xD4) = C2xQ8:3D6φ: C2xD4/C23C2 ⊆ Out D648D6.50(C2xD4)192,1318
D6.51(C2xD4) = C2xD4.D6φ: C2xD4/C23C2 ⊆ Out D696D6.51(C2xD4)192,1319
D6.52(C2xD4) = C2xQ16:S3φ: C2xD4/C23C2 ⊆ Out D696D6.52(C2xD4)192,1323
D6.53(C2xD4) = SD16:D6φ: C2xD4/C23C2 ⊆ Out D6484D6.53(C2xD4)192,1327
D6.54(C2xD4) = D8:4D6φ: C2xD4/C23C2 ⊆ Out D6488-D6.54(C2xD4)192,1332
D6.55(C2xD4) = D24:C22φ: C2xD4/C23C2 ⊆ Out D6488+D6.55(C2xD4)192,1336
D6.56(C2xD4) = C2xS3xC22:C4φ: trivial image48D6.56(C2xD4)192,1043
D6.57(C2xD4) = C2xS3xC4:C4φ: trivial image96D6.57(C2xD4)192,1060
D6.58(C2xD4) = C4xS3xD4φ: trivial image48D6.58(C2xD4)192,1103
D6.59(C2xD4) = S3xC22:Q8φ: trivial image48D6.59(C2xD4)192,1185
D6.60(C2xD4) = S3xC4.4D4φ: trivial image48D6.60(C2xD4)192,1232
D6.61(C2xD4) = S3xC4:1D4φ: trivial image48D6.61(C2xD4)192,1273
D6.62(C2xD4) = S3xC4:Q8φ: trivial image96D6.62(C2xD4)192,1282
D6.63(C2xD4) = C2xS3xD8φ: trivial image48D6.63(C2xD4)192,1313
D6.64(C2xD4) = C2xS3xSD16φ: trivial image48D6.64(C2xD4)192,1317
D6.65(C2xD4) = C2xS3xQ16φ: trivial image96D6.65(C2xD4)192,1322
D6.66(C2xD4) = S3xC4oD8φ: trivial image484D6.66(C2xD4)192,1326
D6.67(C2xD4) = S3xC8:C22φ: trivial image248+D6.67(C2xD4)192,1331
D6.68(C2xD4) = S3xC8.C22φ: trivial image488-D6.68(C2xD4)192,1335

׿
x
:
Z
F
o
wr
Q
<