Copied to
clipboard

G = C11×D9order 198 = 2·32·11

Direct product of C11 and D9

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C11×D9, C9⋊C22, C993C2, C33.2S3, C3.(S3×C11), SmallGroup(198,1)

Series: Derived Chief Lower central Upper central

C1C9 — C11×D9
C1C3C9C99 — C11×D9
C9 — C11×D9
C1C11

Generators and relations for C11×D9
 G = < a,b,c | a11=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

9C2
3S3
9C22
3S3×C11

Smallest permutation representation of C11×D9
On 99 points
Generators in S99
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)
(1 71 22 32 41 45 60 90 79)(2 72 12 33 42 46 61 91 80)(3 73 13 23 43 47 62 92 81)(4 74 14 24 44 48 63 93 82)(5 75 15 25 34 49 64 94 83)(6 76 16 26 35 50 65 95 84)(7 77 17 27 36 51 66 96 85)(8 67 18 28 37 52 56 97 86)(9 68 19 29 38 53 57 98 87)(10 69 20 30 39 54 58 99 88)(11 70 21 31 40 55 59 89 78)
(1 79)(2 80)(3 81)(4 82)(5 83)(6 84)(7 85)(8 86)(9 87)(10 88)(11 78)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 56)(19 57)(20 58)(21 59)(22 60)(23 47)(24 48)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 45)(33 46)(67 97)(68 98)(69 99)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)

G:=sub<Sym(99)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,71,22,32,41,45,60,90,79)(2,72,12,33,42,46,61,91,80)(3,73,13,23,43,47,62,92,81)(4,74,14,24,44,48,63,93,82)(5,75,15,25,34,49,64,94,83)(6,76,16,26,35,50,65,95,84)(7,77,17,27,36,51,66,96,85)(8,67,18,28,37,52,56,97,86)(9,68,19,29,38,53,57,98,87)(10,69,20,30,39,54,58,99,88)(11,70,21,31,40,55,59,89,78), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,78)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,56)(19,57)(20,58)(21,59)(22,60)(23,47)(24,48)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,45)(33,46)(67,97)(68,98)(69,99)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,71,22,32,41,45,60,90,79)(2,72,12,33,42,46,61,91,80)(3,73,13,23,43,47,62,92,81)(4,74,14,24,44,48,63,93,82)(5,75,15,25,34,49,64,94,83)(6,76,16,26,35,50,65,95,84)(7,77,17,27,36,51,66,96,85)(8,67,18,28,37,52,56,97,86)(9,68,19,29,38,53,57,98,87)(10,69,20,30,39,54,58,99,88)(11,70,21,31,40,55,59,89,78), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,78)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,56)(19,57)(20,58)(21,59)(22,60)(23,47)(24,48)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,45)(33,46)(67,97)(68,98)(69,99)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99)], [(1,71,22,32,41,45,60,90,79),(2,72,12,33,42,46,61,91,80),(3,73,13,23,43,47,62,92,81),(4,74,14,24,44,48,63,93,82),(5,75,15,25,34,49,64,94,83),(6,76,16,26,35,50,65,95,84),(7,77,17,27,36,51,66,96,85),(8,67,18,28,37,52,56,97,86),(9,68,19,29,38,53,57,98,87),(10,69,20,30,39,54,58,99,88),(11,70,21,31,40,55,59,89,78)], [(1,79),(2,80),(3,81),(4,82),(5,83),(6,84),(7,85),(8,86),(9,87),(10,88),(11,78),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,56),(19,57),(20,58),(21,59),(22,60),(23,47),(24,48),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,45),(33,46),(67,97),(68,98),(69,99),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96)]])

66 conjugacy classes

class 1  2  3 9A9B9C11A···11J22A···22J33A···33J99A···99AD
order12399911···1122···2233···3399···99
size1922221···19···92···22···2

66 irreducible representations

dim11112222
type++++
imageC1C2C11C22S3D9S3×C11C11×D9
kernelC11×D9C99D9C9C33C11C3C1
# reps111010131030

Matrix representation of C11×D9 in GL2(𝔽199) generated by

1880
0188
,
108142
5751
,
5791
148142
G:=sub<GL(2,GF(199))| [188,0,0,188],[108,57,142,51],[57,148,91,142] >;

C11×D9 in GAP, Magma, Sage, TeX

C_{11}\times D_9
% in TeX

G:=Group("C11xD9");
// GroupNames label

G:=SmallGroup(198,1);
// by ID

G=gap.SmallGroup(198,1);
# by ID

G:=PCGroup([4,-2,-11,-3,-3,1322,82,2115]);
// Polycyclic

G:=Group<a,b,c|a^11=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C11×D9 in TeX

׿
×
𝔽