Copied to
clipboard

G = C9xD11order 198 = 2·32·11

Direct product of C9 and D11

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C9xD11, C11:C18, C99:2C2, C33.C6, C3.(C3xD11), (C3xD11).C3, SmallGroup(198,2)

Series: Derived Chief Lower central Upper central

C1C11 — C9xD11
C1C11C33C99 — C9xD11
C11 — C9xD11
C1C9

Generators and relations for C9xD11
 G = < a,b,c | a9=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 42 in 12 conjugacy classes, 9 normal (all characteristic)
Quotients: C1, C2, C3, C6, C9, C18, D11, C3xD11, C9xD11
11C2
11C6
11C18

Smallest permutation representation of C9xD11
On 99 points
Generators in S99
(1 98 65 32 87 54 21 76 43)(2 99 66 33 88 55 22 77 44)(3 89 56 23 78 45 12 67 34)(4 90 57 24 79 46 13 68 35)(5 91 58 25 80 47 14 69 36)(6 92 59 26 81 48 15 70 37)(7 93 60 27 82 49 16 71 38)(8 94 61 28 83 50 17 72 39)(9 95 62 29 84 51 18 73 40)(10 96 63 30 85 52 19 74 41)(11 97 64 31 86 53 20 75 42)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)(89 95)(90 94)(91 93)(96 99)(97 98)

G:=sub<Sym(99)| (1,98,65,32,87,54,21,76,43)(2,99,66,33,88,55,22,77,44)(3,89,56,23,78,45,12,67,34)(4,90,57,24,79,46,13,68,35)(5,91,58,25,80,47,14,69,36)(6,92,59,26,81,48,15,70,37)(7,93,60,27,82,49,16,71,38)(8,94,61,28,83,50,17,72,39)(9,95,62,29,84,51,18,73,40)(10,96,63,30,85,52,19,74,41)(11,97,64,31,86,53,20,75,42), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98)>;

G:=Group( (1,98,65,32,87,54,21,76,43)(2,99,66,33,88,55,22,77,44)(3,89,56,23,78,45,12,67,34)(4,90,57,24,79,46,13,68,35)(5,91,58,25,80,47,14,69,36)(6,92,59,26,81,48,15,70,37)(7,93,60,27,82,49,16,71,38)(8,94,61,28,83,50,17,72,39)(9,95,62,29,84,51,18,73,40)(10,96,63,30,85,52,19,74,41)(11,97,64,31,86,53,20,75,42), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98) );

G=PermutationGroup([[(1,98,65,32,87,54,21,76,43),(2,99,66,33,88,55,22,77,44),(3,89,56,23,78,45,12,67,34),(4,90,57,24,79,46,13,68,35),(5,91,58,25,80,47,14,69,36),(6,92,59,26,81,48,15,70,37),(7,93,60,27,82,49,16,71,38),(8,94,61,28,83,50,17,72,39),(9,95,62,29,84,51,18,73,40),(10,96,63,30,85,52,19,74,41),(11,97,64,31,86,53,20,75,42)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87),(89,95),(90,94),(91,93),(96,99),(97,98)]])

63 conjugacy classes

class 1  2 3A3B6A6B9A···9F11A···11E18A···18F33A···33J99A···99AD
order1233669···911···1118···1833···3399···99
size1111111111···12···211···112···22···2

63 irreducible representations

dim111111222
type+++
imageC1C2C3C6C9C18D11C3xD11C9xD11
kernelC9xD11C99C3xD11C33D11C11C9C3C1
# reps11226651030

Matrix representation of C9xD11 in GL2(F199) generated by

1780
0178
,
1231
1980
,
01
10
G:=sub<GL(2,GF(199))| [178,0,0,178],[123,198,1,0],[0,1,1,0] >;

C9xD11 in GAP, Magma, Sage, TeX

C_9\times D_{11}
% in TeX

G:=Group("C9xD11");
// GroupNames label

G:=SmallGroup(198,2);
// by ID

G=gap.SmallGroup(198,2);
# by ID

G:=PCGroup([4,-2,-3,-3,-11,29,2883]);
// Polycyclic

G:=Group<a,b,c|a^9=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9xD11 in TeX

׿
x
:
Z
F
o
wr
Q
<