extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C2×C6) = He3⋊3Q8 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C6 | 72 | 6- | (C3xC6).1(C2xC6) | 216,49 |
(C3×C6).2(C2×C6) = C4×C32⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).2(C2xC6) | 216,50 |
(C3×C6).3(C2×C6) = He3⋊4D4 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C6 | 36 | 6+ | (C3xC6).3(C2xC6) | 216,51 |
(C3×C6).4(C2×C6) = C2×C32⋊C12 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C6 | 72 | | (C3xC6).4(C2xC6) | 216,59 |
(C3×C6).5(C2×C6) = He3⋊6D4 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).5(C2xC6) | 216,60 |
(C3×C6).6(C2×C6) = C3×S3×Dic3 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).6(C2xC6) | 216,119 |
(C3×C6).7(C2×C6) = C3×C6.D6 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).7(C2xC6) | 216,120 |
(C3×C6).8(C2×C6) = C3×D6⋊S3 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).8(C2xC6) | 216,121 |
(C3×C6).9(C2×C6) = C3×C3⋊D12 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).9(C2xC6) | 216,122 |
(C3×C6).10(C2×C6) = C3×C32⋊2Q8 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).10(C2xC6) | 216,123 |
(C3×C6).11(C2×C6) = C2×C4×He3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).11(C2xC6) | 216,74 |
(C3×C6).12(C2×C6) = C2×C4×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).12(C2xC6) | 216,75 |
(C3×C6).13(C2×C6) = D4×He3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).13(C2xC6) | 216,77 |
(C3×C6).14(C2×C6) = D4×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).14(C2xC6) | 216,78 |
(C3×C6).15(C2×C6) = Q8×He3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).15(C2xC6) | 216,80 |
(C3×C6).16(C2×C6) = Q8×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).16(C2xC6) | 216,81 |
(C3×C6).17(C2×C6) = C23×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C6 | 72 | | (C3xC6).17(C2xC6) | 216,116 |
(C3×C6).18(C2×C6) = C9×Dic6 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).18(C2xC6) | 216,44 |
(C3×C6).19(C2×C6) = S3×C36 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).19(C2xC6) | 216,47 |
(C3×C6).20(C2×C6) = C9×D12 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | 2 | (C3xC6).20(C2xC6) | 216,48 |
(C3×C6).21(C2×C6) = Dic3×C18 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).21(C2xC6) | 216,56 |
(C3×C6).22(C2×C6) = C9×C3⋊D4 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).22(C2xC6) | 216,58 |
(C3×C6).23(C2×C6) = S3×C2×C18 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).23(C2xC6) | 216,109 |
(C3×C6).24(C2×C6) = C32×Dic6 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).24(C2xC6) | 216,135 |
(C3×C6).25(C2×C6) = S3×C3×C12 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).25(C2xC6) | 216,136 |
(C3×C6).26(C2×C6) = C32×D12 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).26(C2xC6) | 216,137 |
(C3×C6).27(C2×C6) = Dic3×C3×C6 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).27(C2xC6) | 216,138 |
(C3×C6).28(C2×C6) = C32×C3⋊D4 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).28(C2xC6) | 216,139 |
(C3×C6).29(C2×C6) = C3×C32⋊4Q8 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).29(C2xC6) | 216,140 |
(C3×C6).30(C2×C6) = C12×C3⋊S3 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).30(C2xC6) | 216,141 |
(C3×C6).31(C2×C6) = C3×C12⋊S3 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).31(C2xC6) | 216,142 |
(C3×C6).32(C2×C6) = C6×C3⋊Dic3 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).32(C2xC6) | 216,143 |
(C3×C6).33(C2×C6) = C3×C32⋊7D4 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).33(C2xC6) | 216,144 |
(C3×C6).34(C2×C6) = D4×C3×C9 | central extension (φ=1) | 108 | | (C3xC6).34(C2xC6) | 216,76 |
(C3×C6).35(C2×C6) = Q8×C3×C9 | central extension (φ=1) | 216 | | (C3xC6).35(C2xC6) | 216,79 |
(C3×C6).36(C2×C6) = D4×C33 | central extension (φ=1) | 108 | | (C3xC6).36(C2xC6) | 216,151 |
(C3×C6).37(C2×C6) = Q8×C33 | central extension (φ=1) | 216 | | (C3xC6).37(C2xC6) | 216,152 |