direct product, abelian, monomial, 2-elementary
Aliases: C2×C98, SmallGroup(196,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C98 |
C1 — C2×C98 |
C1 — C2×C98 |
Generators and relations for C2×C98
G = < a,b | a2=b98=1, ab=ba >
(1 162)(2 163)(3 164)(4 165)(5 166)(6 167)(7 168)(8 169)(9 170)(10 171)(11 172)(12 173)(13 174)(14 175)(15 176)(16 177)(17 178)(18 179)(19 180)(20 181)(21 182)(22 183)(23 184)(24 185)(25 186)(26 187)(27 188)(28 189)(29 190)(30 191)(31 192)(32 193)(33 194)(34 195)(35 196)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 136)(74 137)(75 138)(76 139)(77 140)(78 141)(79 142)(80 143)(81 144)(82 145)(83 146)(84 147)(85 148)(86 149)(87 150)(88 151)(89 152)(90 153)(91 154)(92 155)(93 156)(94 157)(95 158)(96 159)(97 160)(98 161)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)
G:=sub<Sym(196)| (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,169)(9,170)(10,171)(11,172)(12,173)(13,174)(14,175)(15,176)(16,177)(17,178)(18,179)(19,180)(20,181)(21,182)(22,183)(23,184)(24,185)(25,186)(26,187)(27,188)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)>;
G:=Group( (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,169)(9,170)(10,171)(11,172)(12,173)(13,174)(14,175)(15,176)(16,177)(17,178)(18,179)(19,180)(20,181)(21,182)(22,183)(23,184)(24,185)(25,186)(26,187)(27,188)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196) );
G=PermutationGroup([[(1,162),(2,163),(3,164),(4,165),(5,166),(6,167),(7,168),(8,169),(9,170),(10,171),(11,172),(12,173),(13,174),(14,175),(15,176),(16,177),(17,178),(18,179),(19,180),(20,181),(21,182),(22,183),(23,184),(24,185),(25,186),(26,187),(27,188),(28,189),(29,190),(30,191),(31,192),(32,193),(33,194),(34,195),(35,196),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,136),(74,137),(75,138),(76,139),(77,140),(78,141),(79,142),(80,143),(81,144),(82,145),(83,146),(84,147),(85,148),(86,149),(87,150),(88,151),(89,152),(90,153),(91,154),(92,155),(93,156),(94,157),(95,158),(96,159),(97,160),(98,161)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)]])
C2×C98 is a maximal subgroup of
C49⋊D4
196 conjugacy classes
class | 1 | 2A | 2B | 2C | 7A | ··· | 7F | 14A | ··· | 14R | 49A | ··· | 49AP | 98A | ··· | 98DV |
order | 1 | 2 | 2 | 2 | 7 | ··· | 7 | 14 | ··· | 14 | 49 | ··· | 49 | 98 | ··· | 98 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
196 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C7 | C14 | C49 | C98 |
kernel | C2×C98 | C98 | C2×C14 | C14 | C22 | C2 |
# reps | 1 | 3 | 6 | 18 | 42 | 126 |
Matrix representation of C2×C98 ►in GL2(𝔽197) generated by
196 | 0 |
0 | 196 |
146 | 0 |
0 | 187 |
G:=sub<GL(2,GF(197))| [196,0,0,196],[146,0,0,187] >;
C2×C98 in GAP, Magma, Sage, TeX
C_2\times C_{98}
% in TeX
G:=Group("C2xC98");
// GroupNames label
G:=SmallGroup(196,4);
// by ID
G=gap.SmallGroup(196,4);
# by ID
G:=PCGroup([4,-2,-2,-7,-7,94]);
// Polycyclic
G:=Group<a,b|a^2=b^98=1,a*b=b*a>;
// generators/relations
Export