Copied to
clipboard

G = C2×C98order 196 = 22·72

Abelian group of type [2,98]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C98, SmallGroup(196,4)

Series: Derived Chief Lower central Upper central

C1 — C2×C98
C1C7C49C98 — C2×C98
C1 — C2×C98
C1 — C2×C98

Generators and relations for C2×C98
 G = < a,b | a2=b98=1, ab=ba >


Smallest permutation representation of C2×C98
Regular action on 196 points
Generators in S196
(1 162)(2 163)(3 164)(4 165)(5 166)(6 167)(7 168)(8 169)(9 170)(10 171)(11 172)(12 173)(13 174)(14 175)(15 176)(16 177)(17 178)(18 179)(19 180)(20 181)(21 182)(22 183)(23 184)(24 185)(25 186)(26 187)(27 188)(28 189)(29 190)(30 191)(31 192)(32 193)(33 194)(34 195)(35 196)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 136)(74 137)(75 138)(76 139)(77 140)(78 141)(79 142)(80 143)(81 144)(82 145)(83 146)(84 147)(85 148)(86 149)(87 150)(88 151)(89 152)(90 153)(91 154)(92 155)(93 156)(94 157)(95 158)(96 159)(97 160)(98 161)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)

G:=sub<Sym(196)| (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,169)(9,170)(10,171)(11,172)(12,173)(13,174)(14,175)(15,176)(16,177)(17,178)(18,179)(19,180)(20,181)(21,182)(22,183)(23,184)(24,185)(25,186)(26,187)(27,188)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)>;

G:=Group( (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,169)(9,170)(10,171)(11,172)(12,173)(13,174)(14,175)(15,176)(16,177)(17,178)(18,179)(19,180)(20,181)(21,182)(22,183)(23,184)(24,185)(25,186)(26,187)(27,188)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,148)(86,149)(87,150)(88,151)(89,152)(90,153)(91,154)(92,155)(93,156)(94,157)(95,158)(96,159)(97,160)(98,161), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196) );

G=PermutationGroup([[(1,162),(2,163),(3,164),(4,165),(5,166),(6,167),(7,168),(8,169),(9,170),(10,171),(11,172),(12,173),(13,174),(14,175),(15,176),(16,177),(17,178),(18,179),(19,180),(20,181),(21,182),(22,183),(23,184),(24,185),(25,186),(26,187),(27,188),(28,189),(29,190),(30,191),(31,192),(32,193),(33,194),(34,195),(35,196),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,136),(74,137),(75,138),(76,139),(77,140),(78,141),(79,142),(80,143),(81,144),(82,145),(83,146),(84,147),(85,148),(86,149),(87,150),(88,151),(89,152),(90,153),(91,154),(92,155),(93,156),(94,157),(95,158),(96,159),(97,160),(98,161)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)]])

C2×C98 is a maximal subgroup of   C49⋊D4

196 conjugacy classes

class 1 2A2B2C7A···7F14A···14R49A···49AP98A···98DV
order12227···714···1449···4998···98
size11111···11···11···11···1

196 irreducible representations

dim111111
type++
imageC1C2C7C14C49C98
kernelC2×C98C98C2×C14C14C22C2
# reps1361842126

Matrix representation of C2×C98 in GL2(𝔽197) generated by

1960
0196
,
1460
0187
G:=sub<GL(2,GF(197))| [196,0,0,196],[146,0,0,187] >;

C2×C98 in GAP, Magma, Sage, TeX

C_2\times C_{98}
% in TeX

G:=Group("C2xC98");
// GroupNames label

G:=SmallGroup(196,4);
// by ID

G=gap.SmallGroup(196,4);
# by ID

G:=PCGroup([4,-2,-2,-7,-7,94]);
// Polycyclic

G:=Group<a,b|a^2=b^98=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2×C98 in TeX

׿
×
𝔽