direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D98, C2×D49, C98⋊C2, C49⋊C22, C7.D14, C14.2D7, sometimes denoted D196 or Dih98 or Dih196, SmallGroup(196,3)
Series: Derived ►Chief ►Lower central ►Upper central
C49 — D98 |
Generators and relations for D98
G = < a,b | a98=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98)
(1 98)(2 97)(3 96)(4 95)(5 94)(6 93)(7 92)(8 91)(9 90)(10 89)(11 88)(12 87)(13 86)(14 85)(15 84)(16 83)(17 82)(18 81)(19 80)(20 79)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 70)(30 69)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 62)(38 61)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)
G:=sub<Sym(98)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98), (1,98)(2,97)(3,96)(4,95)(5,94)(6,93)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98), (1,98)(2,97)(3,96)(4,95)(5,94)(6,93)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,70)(30,69)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98)], [(1,98),(2,97),(3,96),(4,95),(5,94),(6,93),(7,92),(8,91),(9,90),(10,89),(11,88),(12,87),(13,86),(14,85),(15,84),(16,83),(17,82),(18,81),(19,80),(20,79),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,70),(30,69),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,62),(38,61),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50)]])
D98 is a maximal subgroup of
D196 C49⋊D4
D98 is a maximal quotient of Dic98 D196 C49⋊D4
52 conjugacy classes
class | 1 | 2A | 2B | 2C | 7A | 7B | 7C | 14A | 14B | 14C | 49A | ··· | 49U | 98A | ··· | 98U |
order | 1 | 2 | 2 | 2 | 7 | 7 | 7 | 14 | 14 | 14 | 49 | ··· | 49 | 98 | ··· | 98 |
size | 1 | 1 | 49 | 49 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
52 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D7 | D14 | D49 | D98 |
kernel | D98 | D49 | C98 | C14 | C7 | C2 | C1 |
# reps | 1 | 2 | 1 | 3 | 3 | 21 | 21 |
Matrix representation of D98 ►in GL2(𝔽197) generated by
145 | 178 |
19 | 113 |
145 | 178 |
163 | 52 |
G:=sub<GL(2,GF(197))| [145,19,178,113],[145,163,178,52] >;
D98 in GAP, Magma, Sage, TeX
D_{98}
% in TeX
G:=Group("D98");
// GroupNames label
G:=SmallGroup(196,3);
// by ID
G=gap.SmallGroup(196,3);
# by ID
G:=PCGroup([4,-2,-2,-7,-7,626,514,2691]);
// Polycyclic
G:=Group<a,b|a^98=b^2=1,b*a*b=a^-1>;
// generators/relations
Export