Copied to
clipboard

G = C2×C9⋊A4order 216 = 23·33

Direct product of C2 and C9⋊A4

direct product, metabelian, soluble, monomial

Aliases: C2×C9⋊A4, C18⋊A4, C2313- 1+2, C92(C2×A4), (C6×A4).C3, (C3×A4).C6, (C2×C18)⋊7C6, C3.A42C6, C3.3(C6×A4), C6.4(C3×A4), (C22×C18)⋊2C3, (C22×C6).2C32, C221(C2×3- 1+2), (C2×C3.A4)⋊1C3, (C2×C6).2(C3×C6), SmallGroup(216,104)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C2×C9⋊A4
C1C22C2×C6C2×C18C9⋊A4 — C2×C9⋊A4
C22C2×C6 — C2×C9⋊A4
C1C6C18

Generators and relations for C2×C9⋊A4
 G = < a,b,c,d,e | a2=b9=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b7, ece-1=cd=dc, ede-1=c >

3C2
3C2
12C3
3C22
3C22
3C6
3C6
12C6
4C32
4C9
4C9
3C2×C6
3C2×C6
3A4
3C18
3C18
4C3×C6
4C18
4C18
43- 1+2
3C2×A4
3C2×C18
3C2×C18
4C2×3- 1+2

Smallest permutation representation of C2×C9⋊A4
On 54 points
Generators in S54
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 19)(9 20)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 46)(17 47)(18 48)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 46)(17 47)(18 48)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 19)(9 20)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 52 28)(2 47 35)(3 51 33)(4 46 31)(5 50 29)(6 54 36)(7 49 34)(8 53 32)(9 48 30)(10 43 27)(11 38 25)(12 42 23)(13 37 21)(14 41 19)(15 45 26)(16 40 24)(17 44 22)(18 39 20)

G:=sub<Sym(54)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,52,28)(2,47,35)(3,51,33)(4,46,31)(5,50,29)(6,54,36)(7,49,34)(8,53,32)(9,48,30)(10,43,27)(11,38,25)(12,42,23)(13,37,21)(14,41,19)(15,45,26)(16,40,24)(17,44,22)(18,39,20)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,19)(9,20)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,52,28)(2,47,35)(3,51,33)(4,46,31)(5,50,29)(6,54,36)(7,49,34)(8,53,32)(9,48,30)(10,43,27)(11,38,25)(12,42,23)(13,37,21)(14,41,19)(15,45,26)(16,40,24)(17,44,22)(18,39,20) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,19),(9,20),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,46),(17,47),(18,48),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,46),(17,47),(18,48),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,19),(9,20),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,52,28),(2,47,35),(3,51,33),(4,46,31),(5,50,29),(6,54,36),(7,49,34),(8,53,32),(9,48,30),(10,43,27),(11,38,25),(12,42,23),(13,37,21),(14,41,19),(15,45,26),(16,40,24),(17,44,22),(18,39,20)]])

C2×C9⋊A4 is a maximal subgroup of   Dic9⋊A4
C2×C9⋊A4 is a maximal quotient of   C36.A4

40 conjugacy classes

class 1 2A2B2C3A3B3C3D6A6B6C6D6E6F6G6H9A9B9C9D9E9F18A···18N18O18P18Q18R
order122233336666666699999918···1818181818
size1133111212113333121233121212123···312121212

40 irreducible representations

dim1111111133333333
type++++
imageC1C2C3C3C3C6C6C6A4C2×A43- 1+2C3×A4C2×3- 1+2C6×A4C9⋊A4C2×C9⋊A4
kernelC2×C9⋊A4C9⋊A4C2×C3.A4C22×C18C6×A4C3.A4C2×C18C3×A4C18C9C23C6C22C3C2C1
# reps1142242211222266

Matrix representation of C2×C9⋊A4 in GL3(𝔽19) generated by

1800
0180
0018
,
900
060
004
,
100
0180
0018
,
1800
0180
001
,
010
001
100
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[9,0,0,0,6,0,0,0,4],[1,0,0,0,18,0,0,0,18],[18,0,0,0,18,0,0,0,1],[0,0,1,1,0,0,0,1,0] >;

C2×C9⋊A4 in GAP, Magma, Sage, TeX

C_2\times C_9\rtimes A_4
% in TeX

G:=Group("C2xC9:A4");
// GroupNames label

G:=SmallGroup(216,104);
// by ID

G=gap.SmallGroup(216,104);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,224,68,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^9=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^7,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C2×C9⋊A4 in TeX

׿
×
𝔽