Extensions 1→N→G→Q→1 with N=C2×C18 and Q=C6

Direct product G=N×Q with N=C2×C18 and Q=C6
dρLabelID
C2×C6×C18216C2xC6xC18216,114

Semidirect products G=N:Q with N=C2×C18 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊1C6 = D9⋊A4φ: C6/C1C6 ⊆ Aut C2×C18366+(C2xC18):1C6216,96
(C2×C18)⋊2C6 = A4×D9φ: C6/C1C6 ⊆ Aut C2×C18366+(C2xC18):2C6216,97
(C2×C18)⋊3C6 = Dic9⋊C6φ: C6/C1C6 ⊆ Aut C2×C18366(C2xC18):3C6216,62
(C2×C18)⋊4C6 = C22×C9⋊C6φ: C6/C1C6 ⊆ Aut C2×C1836(C2xC18):4C6216,111
(C2×C18)⋊5C6 = D4×3- 1+2φ: C6/C1C6 ⊆ Aut C2×C18366(C2xC18):5C6216,78
(C2×C18)⋊6C6 = A4×C18φ: C6/C2C3 ⊆ Aut C2×C18543(C2xC18):6C6216,103
(C2×C18)⋊7C6 = C2×C9⋊A4φ: C6/C2C3 ⊆ Aut C2×C18543(C2xC18):7C6216,104
(C2×C18)⋊8C6 = C23×3- 1+2φ: C6/C2C3 ⊆ Aut C2×C1872(C2xC18):8C6216,116
(C2×C18)⋊9C6 = D4×C3×C9φ: C6/C3C2 ⊆ Aut C2×C18108(C2xC18):9C6216,76
(C2×C18)⋊10C6 = C3×C9⋊D4φ: C6/C3C2 ⊆ Aut C2×C18362(C2xC18):10C6216,57
(C2×C18)⋊11C6 = C2×C6×D9φ: C6/C3C2 ⊆ Aut C2×C1872(C2xC18):11C6216,108

Non-split extensions G=N.Q with N=C2×C18 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C18).C6 = C2×C9⋊C12φ: C6/C1C6 ⊆ Aut C2×C1872(C2xC18).C6216,61
(C2×C18).2C6 = C2×C9.A4φ: C6/C2C3 ⊆ Aut C2×C18543(C2xC18).2C6216,22
(C2×C18).3C6 = C2×C4×3- 1+2φ: C6/C2C3 ⊆ Aut C2×C1872(C2xC18).3C6216,75
(C2×C18).4C6 = D4×C27φ: C6/C3C2 ⊆ Aut C2×C181082(C2xC18).4C6216,10
(C2×C18).5C6 = C6×Dic9φ: C6/C3C2 ⊆ Aut C2×C1872(C2xC18).5C6216,55

׿
×
𝔽