Copied to
clipboard

G = C2×He3⋊C4order 216 = 23·33

Direct product of C2 and He3⋊C4

direct product, non-abelian, soluble

Aliases: C2×He3⋊C4, (C2×He3)⋊C4, He31(C2×C4), He3⋊C21C4, C6.3(C32⋊C4), He3⋊C2.3C22, C3.(C2×C32⋊C4), (C2×He3⋊C2).2C2, SmallGroup(216,100)

Series: Derived Chief Lower central Upper central

C1C3He3 — C2×He3⋊C4
C1C3He3He3⋊C2He3⋊C4 — C2×He3⋊C4
He3 — C2×He3⋊C4
C1C6

Generators and relations for C2×He3⋊C4
 G = < a,b,c,d,e | a2=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=bcd, cd=dc, ce=ec, ede-1=bd-1 >

9C2
9C2
6C3
6C3
9C4
9C4
9C22
6C6
6S3
6C6
6S3
6S3
6S3
9C6
9C6
2C32
2C32
9C2×C4
6D6
6D6
9C12
9C12
9C2×C6
2C3×C6
2C3×C6
6C3×S3
6C3×S3
6C3×S3
6C3×S3
9C2×C12
6S3×C6
6S3×C6

Character table of C2×He3⋊C4

 class 12A2B2C3A3B3C3D4A4B4C4D6A6B6C6D6E6F6G6H12A12B12C12D12E12F12G12H
 size 11991112129999119999121299999999
ρ11111111111111111111111111111    trivial
ρ21-1-1111111-1-11-1-1-11-11-1-1-1-1-111-111    linear of order 2
ρ311111111-1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ41-1-111111-111-1-1-1-11-11-1-1111-1-11-1-1    linear of order 2
ρ511-1-11111-ii-ii11-1-1-1-111i-i-iiii-i-i    linear of order 4
ρ61-11-11111-i-iii-1-11-11-1-1-1-iiiii-i-i-i    linear of order 4
ρ71-11-11111ii-i-i-1-11-11-1-1-1i-i-i-i-iiii    linear of order 4
ρ811-1-11111i-ii-i11-1-1-1-111-iii-i-i-iii    linear of order 4
ρ933-1-1-3+3-3/2-3-3-3/200-1-1-1-1-3-3-3/2-3+3-3/2ζ65ζ65ζ6ζ600ζ6ζ6ζ65ζ65ζ6ζ65ζ65ζ6    complex lifted from He3⋊C4
ρ103-31-1-3-3-3/2-3+3-3/200-111-13-3-3/23+3-3/2ζ32ζ6ζ3ζ6500ζ3ζ3ζ32ζ6ζ65ζ32ζ6ζ65    complex faithful
ρ113-31-1-3+3-3/2-3-3-3/2001-1-113+3-3/23-3-3/2ζ3ζ65ζ32ζ600ζ6ζ6ζ65ζ3ζ32ζ65ζ3ζ32    complex faithful
ρ1233-1-1-3-3-3/2-3+3-3/2001111-3+3-3/2-3-3-3/2ζ6ζ6ζ65ζ6500ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ3    complex lifted from He3⋊C4
ρ1333-1-1-3+3-3/2-3-3-3/2001111-3-3-3/2-3+3-3/2ζ65ζ65ζ6ζ600ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ32    complex lifted from He3⋊C4
ρ1433-1-1-3-3-3/2-3+3-3/200-1-1-1-1-3+3-3/2-3-3-3/2ζ6ζ6ζ65ζ6500ζ65ζ65ζ6ζ6ζ65ζ6ζ6ζ65    complex lifted from He3⋊C4
ρ153-31-1-3-3-3/2-3+3-3/2001-1-113-3-3/23+3-3/2ζ32ζ6ζ3ζ6500ζ65ζ65ζ6ζ32ζ3ζ6ζ32ζ3    complex faithful
ρ163-31-1-3+3-3/2-3-3-3/200-111-13+3-3/23-3-3/2ζ3ζ65ζ32ζ600ζ32ζ32ζ3ζ65ζ6ζ3ζ65ζ6    complex faithful
ρ173311-3+3-3/2-3-3-3/200i-ii-i-3-3-3/2-3+3-3/2ζ3ζ3ζ32ζ3200ζ43ζ32ζ4ζ32ζ4ζ3ζ43ζ3ζ43ζ32ζ43ζ3ζ4ζ3ζ4ζ32    complex lifted from He3⋊C4
ρ183-3-11-3+3-3/2-3-3-3/200ii-i-i3+3-3/23-3-3/2ζ65ζ3ζ6ζ3200ζ4ζ32ζ43ζ32ζ43ζ3ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ3ζ4ζ32    complex faithful
ρ193311-3-3-3/2-3+3-3/200-ii-ii-3+3-3/2-3-3-3/2ζ32ζ32ζ3ζ300ζ4ζ3ζ43ζ3ζ43ζ32ζ4ζ32ζ4ζ3ζ4ζ32ζ43ζ32ζ43ζ3    complex lifted from He3⋊C4
ρ203-3-11-3+3-3/2-3-3-3/200-i-iii3+3-3/23-3-3/2ζ65ζ3ζ6ζ3200ζ43ζ32ζ4ζ32ζ4ζ3ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ3ζ43ζ32    complex faithful
ρ213311-3-3-3/2-3+3-3/200i-ii-i-3+3-3/2-3-3-3/2ζ32ζ32ζ3ζ300ζ43ζ3ζ4ζ3ζ4ζ32ζ43ζ32ζ43ζ3ζ43ζ32ζ4ζ32ζ4ζ3    complex lifted from He3⋊C4
ρ223311-3+3-3/2-3-3-3/200-ii-ii-3-3-3/2-3+3-3/2ζ3ζ3ζ32ζ3200ζ4ζ32ζ43ζ32ζ43ζ3ζ4ζ3ζ4ζ32ζ4ζ3ζ43ζ3ζ43ζ32    complex lifted from He3⋊C4
ρ233-3-11-3-3-3/2-3+3-3/200ii-i-i3-3-3/23+3-3/2ζ6ζ32ζ65ζ300ζ4ζ3ζ43ζ3ζ43ζ32ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ32ζ4ζ3    complex faithful
ρ243-3-11-3-3-3/2-3+3-3/200-i-iii3-3-3/23+3-3/2ζ6ζ32ζ65ζ300ζ43ζ3ζ4ζ3ζ4ζ32ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ32ζ43ζ3    complex faithful
ρ254-40044-210000-4-400002-100000000    orthogonal lifted from C2×C32⋊C4
ρ26440044-210000440000-2100000000    orthogonal lifted from C32⋊C4
ρ274-400441-20000-4-40000-1200000000    orthogonal lifted from C2×C32⋊C4
ρ284400441-200004400001-200000000    orthogonal lifted from C32⋊C4

Smallest permutation representation of C2×He3⋊C4
On 36 points
Generators in S36
(1 5)(2 6)(3 10)(4 9)(7 12)(8 11)(13 28)(14 25)(15 26)(16 27)(17 31)(18 32)(19 29)(20 30)(21 33)(22 34)(23 35)(24 36)
(1 16 21)(2 24 19)(3 30 25)(4 28 34)(5 27 33)(6 36 29)(7 31 26)(8 35 32)(9 13 22)(10 20 14)(11 23 18)(12 17 15)
(1 10 11)(2 9 12)(3 8 5)(4 7 6)(13 17 24)(14 18 21)(15 19 22)(16 20 23)(25 32 33)(26 29 34)(27 30 35)(28 31 36)
(2 24 22)(4 28 26)(6 36 34)(7 31 29)(9 13 15)(12 17 19)(14 21 18)(16 20 23)(25 33 32)(27 30 35)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)

G:=sub<Sym(36)| (1,5)(2,6)(3,10)(4,9)(7,12)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30)(21,33)(22,34)(23,35)(24,36), (1,16,21)(2,24,19)(3,30,25)(4,28,34)(5,27,33)(6,36,29)(7,31,26)(8,35,32)(9,13,22)(10,20,14)(11,23,18)(12,17,15), (1,10,11)(2,9,12)(3,8,5)(4,7,6)(13,17,24)(14,18,21)(15,19,22)(16,20,23)(25,32,33)(26,29,34)(27,30,35)(28,31,36), (2,24,22)(4,28,26)(6,36,34)(7,31,29)(9,13,15)(12,17,19)(14,21,18)(16,20,23)(25,33,32)(27,30,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)>;

G:=Group( (1,5)(2,6)(3,10)(4,9)(7,12)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30)(21,33)(22,34)(23,35)(24,36), (1,16,21)(2,24,19)(3,30,25)(4,28,34)(5,27,33)(6,36,29)(7,31,26)(8,35,32)(9,13,22)(10,20,14)(11,23,18)(12,17,15), (1,10,11)(2,9,12)(3,8,5)(4,7,6)(13,17,24)(14,18,21)(15,19,22)(16,20,23)(25,32,33)(26,29,34)(27,30,35)(28,31,36), (2,24,22)(4,28,26)(6,36,34)(7,31,29)(9,13,15)(12,17,19)(14,21,18)(16,20,23)(25,33,32)(27,30,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36) );

G=PermutationGroup([[(1,5),(2,6),(3,10),(4,9),(7,12),(8,11),(13,28),(14,25),(15,26),(16,27),(17,31),(18,32),(19,29),(20,30),(21,33),(22,34),(23,35),(24,36)], [(1,16,21),(2,24,19),(3,30,25),(4,28,34),(5,27,33),(6,36,29),(7,31,26),(8,35,32),(9,13,22),(10,20,14),(11,23,18),(12,17,15)], [(1,10,11),(2,9,12),(3,8,5),(4,7,6),(13,17,24),(14,18,21),(15,19,22),(16,20,23),(25,32,33),(26,29,34),(27,30,35),(28,31,36)], [(2,24,22),(4,28,26),(6,36,34),(7,31,29),(9,13,15),(12,17,19),(14,21,18),(16,20,23),(25,33,32),(27,30,35)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)]])

C2×He3⋊C4 is a maximal subgroup of   C6.S3≀C2  C32⋊D6⋊C4  C2.SU3(𝔽2)  C4⋊(He3⋊C4)  C22⋊(He3⋊C4)
C2×He3⋊C4 is a maximal quotient of   He32(C2×C8)  He31M4(2)  C4⋊(He3⋊C4)  He34M4(2)  C22⋊(He3⋊C4)

Matrix representation of C2×He3⋊C4 in GL3(𝔽7) generated by

600
060
006
,
210
454
550
,
400
040
004
,
100
220
604
,
041
510
030
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[2,4,5,1,5,5,0,4,0],[4,0,0,0,4,0,0,0,4],[1,2,6,0,2,0,0,0,4],[0,5,0,4,1,3,1,0,0] >;

C2×He3⋊C4 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes C_4
% in TeX

G:=Group("C2xHe3:C4");
// GroupNames label

G:=SmallGroup(216,100);
// by ID

G=gap.SmallGroup(216,100);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-3,24,1347,111,1924,916,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

Export

Subgroup lattice of C2×He3⋊C4 in TeX
Character table of C2×He3⋊C4 in TeX

׿
×
𝔽