direct product, non-abelian, soluble
Aliases: C2×He3⋊C4, (C2×He3)⋊C4, He3⋊1(C2×C4), He3⋊C2⋊1C4, C6.3(C32⋊C4), He3⋊C2.3C22, C3.(C2×C32⋊C4), (C2×He3⋊C2).2C2, SmallGroup(216,100)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊C2 — He3⋊C4 — C2×He3⋊C4 |
He3 — C2×He3⋊C4 |
Generators and relations for C2×He3⋊C4
G = < a,b,c,d,e | a2=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=bcd, cd=dc, ce=ec, ede-1=bd-1 >
Character table of C2×He3⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 9 | 9 | 1 | 1 | 12 | 12 | 9 | 9 | 9 | 9 | 1 | 1 | 9 | 9 | 9 | 9 | 12 | 12 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | i | i | i | i | -i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | i | -i | -i | -i | -i | i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from He3⋊C4 |
ρ10 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | 1 | 1 | -1 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ6 | ζ3 | ζ65 | 0 | 0 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ6 | ζ65 | complex faithful |
ρ11 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 1 | -1 | -1 | 1 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ65 | ζ32 | ζ6 | 0 | 0 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | complex faithful |
ρ12 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 1 | 1 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | complex lifted from He3⋊C4 |
ρ13 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 1 | 1 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | complex lifted from He3⋊C4 |
ρ14 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from He3⋊C4 |
ρ15 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 1 | -1 | -1 | 1 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ6 | ζ3 | ζ65 | 0 | 0 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | complex faithful |
ρ16 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | 1 | 1 | -1 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ65 | ζ32 | ζ6 | 0 | 0 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ65 | ζ6 | complex faithful |
ρ17 | 3 | 3 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | i | -i | i | -i | -3-3√-3/2 | -3+3√-3/2 | ζ3 | ζ3 | ζ32 | ζ32 | 0 | 0 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | complex lifted from He3⋊C4 |
ρ18 | 3 | -3 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | i | i | -i | -i | 3+3√-3/2 | 3-3√-3/2 | ζ65 | ζ3 | ζ6 | ζ32 | 0 | 0 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ4ζ32 | complex faithful |
ρ19 | 3 | 3 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -i | i | -i | i | -3+3√-3/2 | -3-3√-3/2 | ζ32 | ζ32 | ζ3 | ζ3 | 0 | 0 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | complex lifted from He3⋊C4 |
ρ20 | 3 | -3 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -i | -i | i | i | 3+3√-3/2 | 3-3√-3/2 | ζ65 | ζ3 | ζ6 | ζ32 | 0 | 0 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ43ζ32 | complex faithful |
ρ21 | 3 | 3 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | i | -i | i | -i | -3+3√-3/2 | -3-3√-3/2 | ζ32 | ζ32 | ζ3 | ζ3 | 0 | 0 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | complex lifted from He3⋊C4 |
ρ22 | 3 | 3 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -i | i | -i | i | -3-3√-3/2 | -3+3√-3/2 | ζ3 | ζ3 | ζ32 | ζ32 | 0 | 0 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | complex lifted from He3⋊C4 |
ρ23 | 3 | -3 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | i | i | -i | -i | 3-3√-3/2 | 3+3√-3/2 | ζ6 | ζ32 | ζ65 | ζ3 | 0 | 0 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ4ζ3 | complex faithful |
ρ24 | 3 | -3 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -i | -i | i | i | 3-3√-3/2 | 3+3√-3/2 | ζ6 | ζ32 | ζ65 | ζ3 | 0 | 0 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ43ζ3 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ26 | 4 | 4 | 0 | 0 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ27 | 4 | -4 | 0 | 0 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ28 | 4 | 4 | 0 | 0 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
(1 5)(2 6)(3 10)(4 9)(7 12)(8 11)(13 28)(14 25)(15 26)(16 27)(17 31)(18 32)(19 29)(20 30)(21 33)(22 34)(23 35)(24 36)
(1 16 21)(2 24 19)(3 30 25)(4 28 34)(5 27 33)(6 36 29)(7 31 26)(8 35 32)(9 13 22)(10 20 14)(11 23 18)(12 17 15)
(1 10 11)(2 9 12)(3 8 5)(4 7 6)(13 17 24)(14 18 21)(15 19 22)(16 20 23)(25 32 33)(26 29 34)(27 30 35)(28 31 36)
(2 24 22)(4 28 26)(6 36 34)(7 31 29)(9 13 15)(12 17 19)(14 21 18)(16 20 23)(25 33 32)(27 30 35)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
G:=sub<Sym(36)| (1,5)(2,6)(3,10)(4,9)(7,12)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30)(21,33)(22,34)(23,35)(24,36), (1,16,21)(2,24,19)(3,30,25)(4,28,34)(5,27,33)(6,36,29)(7,31,26)(8,35,32)(9,13,22)(10,20,14)(11,23,18)(12,17,15), (1,10,11)(2,9,12)(3,8,5)(4,7,6)(13,17,24)(14,18,21)(15,19,22)(16,20,23)(25,32,33)(26,29,34)(27,30,35)(28,31,36), (2,24,22)(4,28,26)(6,36,34)(7,31,29)(9,13,15)(12,17,19)(14,21,18)(16,20,23)(25,33,32)(27,30,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)>;
G:=Group( (1,5)(2,6)(3,10)(4,9)(7,12)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30)(21,33)(22,34)(23,35)(24,36), (1,16,21)(2,24,19)(3,30,25)(4,28,34)(5,27,33)(6,36,29)(7,31,26)(8,35,32)(9,13,22)(10,20,14)(11,23,18)(12,17,15), (1,10,11)(2,9,12)(3,8,5)(4,7,6)(13,17,24)(14,18,21)(15,19,22)(16,20,23)(25,32,33)(26,29,34)(27,30,35)(28,31,36), (2,24,22)(4,28,26)(6,36,34)(7,31,29)(9,13,15)(12,17,19)(14,21,18)(16,20,23)(25,33,32)(27,30,35), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36) );
G=PermutationGroup([[(1,5),(2,6),(3,10),(4,9),(7,12),(8,11),(13,28),(14,25),(15,26),(16,27),(17,31),(18,32),(19,29),(20,30),(21,33),(22,34),(23,35),(24,36)], [(1,16,21),(2,24,19),(3,30,25),(4,28,34),(5,27,33),(6,36,29),(7,31,26),(8,35,32),(9,13,22),(10,20,14),(11,23,18),(12,17,15)], [(1,10,11),(2,9,12),(3,8,5),(4,7,6),(13,17,24),(14,18,21),(15,19,22),(16,20,23),(25,32,33),(26,29,34),(27,30,35),(28,31,36)], [(2,24,22),(4,28,26),(6,36,34),(7,31,29),(9,13,15),(12,17,19),(14,21,18),(16,20,23),(25,33,32),(27,30,35)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)]])
C2×He3⋊C4 is a maximal subgroup of
C6.S3≀C2 C32⋊D6⋊C4 C2.SU3(𝔽2) C4⋊(He3⋊C4) C22⋊(He3⋊C4)
C2×He3⋊C4 is a maximal quotient of He3⋊2(C2×C8) He3⋊1M4(2) C4⋊(He3⋊C4) He3⋊4M4(2) C22⋊(He3⋊C4)
Matrix representation of C2×He3⋊C4 ►in GL3(𝔽7) generated by
6 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 6 |
2 | 1 | 0 |
4 | 5 | 4 |
5 | 5 | 0 |
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
1 | 0 | 0 |
2 | 2 | 0 |
6 | 0 | 4 |
0 | 4 | 1 |
5 | 1 | 0 |
0 | 3 | 0 |
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[2,4,5,1,5,5,0,4,0],[4,0,0,0,4,0,0,0,4],[1,2,6,0,2,0,0,0,4],[0,5,0,4,1,3,1,0,0] >;
C2×He3⋊C4 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes C_4
% in TeX
G:=Group("C2xHe3:C4");
// GroupNames label
G:=SmallGroup(216,100);
// by ID
G=gap.SmallGroup(216,100);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,24,1347,111,1924,916,382]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations
Export
Subgroup lattice of C2×He3⋊C4 in TeX
Character table of C2×He3⋊C4 in TeX