Extensions 1→N→G→Q→1 with N=C2×He3 and Q=C4

Direct product G=N×Q with N=C2×He3 and Q=C4
dρLabelID
C2×C4×He372C2xC4xHe3216,74

Semidirect products G=N:Q with N=C2×He3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊C4 = C2×He3⋊C4φ: C4/C1C4 ⊆ Out C2×He3363(C2xHe3):C4216,100
(C2×He3)⋊2C4 = C2×C32⋊C12φ: C4/C2C2 ⊆ Out C2×He372(C2xHe3):2C4216,59
(C2×He3)⋊3C4 = C2×He33C4φ: C4/C2C2 ⊆ Out C2×He372(C2xHe3):3C4216,71

Non-split extensions G=N.Q with N=C2×He3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×He3).C4 = He32C8φ: C4/C1C4 ⊆ Out C2×He3723(C2xHe3).C4216,25
(C2×He3).2C4 = He33C8φ: C4/C2C2 ⊆ Out C2×He3726(C2xHe3).2C4216,14
(C2×He3).3C4 = He34C8φ: C4/C2C2 ⊆ Out C2×He3723(C2xHe3).3C4216,17
(C2×He3).4C4 = C8×He3φ: trivial image723(C2xHe3).4C4216,19

׿
×
𝔽