Copied to
clipboard

G = C2xS3xD9order 216 = 23·33

Direct product of C2, S3 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2xS3xD9, C6:1D18, C18:1D6, C6.8S32, (C3xC9):C23, C9:S3:C22, (C3xS3).D6, (C6xD9):5C2, (S3xC9):C22, (C3xC18):C22, (C3xD9):C22, (S3xC18):5C2, (S3xC6).4S3, C9:1(C22xS3), (C3xC6).29D6, C3:1(C22xD9), C32.2(C22xS3), C3.1(C2xS32), (C2xC9:S3):5C2, SmallGroup(216,101)

Series: Derived Chief Lower central Upper central

C1C3xC9 — C2xS3xD9
C1C3C32C3xC9S3xC9S3xD9 — C2xS3xD9
C3xC9 — C2xS3xD9
C1C2

Generators and relations for C2xS3xD9
 G = < a,b,c,d,e | a2=b3=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 622 in 106 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C3, C22, S3, S3, C6, C6, C23, C9, C9, C32, D6, D6, C2xC6, D9, D9, C18, C18, C3xS3, C3xS3, C3:S3, C3xC6, C22xS3, C3xC9, D18, D18, C2xC18, S32, S3xC6, S3xC6, C2xC3:S3, C3xD9, S3xC9, C9:S3, C3xC18, C22xD9, C2xS32, S3xD9, C6xD9, S3xC18, C2xC9:S3, C2xS3xD9
Quotients: C1, C2, C22, S3, C23, D6, D9, C22xS3, D18, S32, C22xD9, C2xS32, S3xD9, C2xS3xD9

Smallest permutation representation of C2xS3xD9
On 36 points
Generators in S36
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 19)(8 20)(9 21)(10 36)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 21)(2 20)(3 19)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 34)(11 33)(12 32)(13 31)(14 30)(15 29)(16 28)(17 36)(18 35)

G:=sub<Sym(36)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,19)(8,20)(9,21)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,21)(2,20)(3,19)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,36)(18,35)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,19)(8,20)(9,21)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,21)(2,20)(3,19)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,36)(18,35) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,19),(8,20),(9,21),(10,36),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,21),(2,20),(3,19),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,34),(11,33),(12,32),(13,31),(14,30),(15,29),(16,28),(17,36),(18,35)]])

C2xS3xD9 is a maximal subgroup of
C36:D6  D18:D6
C2xS3xD9 is a maximal quotient of
D18.D6  Dic6:5D9  Dic18:S3  D12:5D9  D12:D9  D6.D18  D36:5S3  Dic9.D6  C36:D6  D18.3D6  Dic3.D18  D18.4D6  D18:D6

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C6A6B6C6D6E6F6G9A9B9C9D9E9F18A18B18C18D18E18F18G···18L
order12222222333666666699999918181818181818···18
size11339927272242246618182224442224446···6

36 irreducible representations

dim111112222222224444
type++++++++++++++++++
imageC1C2C2C2C2S3S3D6D6D6D6D9D18D18S32C2xS32S3xD9C2xS3xD9
kernelC2xS3xD9S3xD9C6xD9S3xC18C2xC9:S3D18S3xC6D9C18C3xS3C3xC6D6S3C6C6C3C2C1
# reps141111121213631133

Matrix representation of C2xS3xD9 in GL4(F19) generated by

18000
01800
0010
0001
,
18100
18000
0010
0001
,
0100
1000
00180
00018
,
1000
0100
0025
00147
,
1000
0100
00512
001714
G:=sub<GL(4,GF(19))| [18,0,0,0,0,18,0,0,0,0,1,0,0,0,0,1],[18,18,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,2,14,0,0,5,7],[1,0,0,0,0,1,0,0,0,0,5,17,0,0,12,14] >;

C2xS3xD9 in GAP, Magma, Sage, TeX

C_2\times S_3\times D_9
% in TeX

G:=Group("C2xS3xD9");
// GroupNames label

G:=SmallGroup(216,101);
// by ID

G=gap.SmallGroup(216,101);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,1065,453,1444,2603]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<