Copied to
clipboard

G = C3⋊D33order 198 = 2·32·11

The semidirect product of C3 and D33 acting via D33/C33=C2

metabelian, supersoluble, monomial, A-group

Aliases: C3⋊D33, C331S3, C322D11, C11⋊(C3⋊S3), (C3×C33)⋊1C2, SmallGroup(198,9)

Series: Derived Chief Lower central Upper central

C1C3×C33 — C3⋊D33
C1C11C33C3×C33 — C3⋊D33
C3×C33 — C3⋊D33
C1

Generators and relations for C3⋊D33
 G = < a,b,c | a3=b33=c2=1, ab=ba, cac=a-1, cbc=b-1 >

99C2
33S3
33S3
33S3
33S3
9D11
11C3⋊S3
3D33
3D33
3D33
3D33

Smallest permutation representation of C3⋊D33
On 99 points
Generators in S99
(1 92 65)(2 93 66)(3 94 34)(4 95 35)(5 96 36)(6 97 37)(7 98 38)(8 99 39)(9 67 40)(10 68 41)(11 69 42)(12 70 43)(13 71 44)(14 72 45)(15 73 46)(16 74 47)(17 75 48)(18 76 49)(19 77 50)(20 78 51)(21 79 52)(22 80 53)(23 81 54)(24 82 55)(25 83 56)(26 84 57)(27 85 58)(28 86 59)(29 87 60)(30 88 61)(31 89 62)(32 90 63)(33 91 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 89)(35 88)(36 87)(37 86)(38 85)(39 84)(40 83)(41 82)(42 81)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)

G:=sub<Sym(99)| (1,92,65)(2,93,66)(3,94,34)(4,95,35)(5,96,36)(6,97,37)(7,98,38)(8,99,39)(9,67,40)(10,68,41)(11,69,42)(12,70,43)(13,71,44)(14,72,45)(15,73,46)(16,74,47)(17,75,48)(18,76,49)(19,77,50)(20,78,51)(21,79,52)(22,80,53)(23,81,54)(24,82,55)(25,83,56)(26,84,57)(27,85,58)(28,86,59)(29,87,60)(30,88,61)(31,89,62)(32,90,63)(33,91,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)>;

G:=Group( (1,92,65)(2,93,66)(3,94,34)(4,95,35)(5,96,36)(6,97,37)(7,98,38)(8,99,39)(9,67,40)(10,68,41)(11,69,42)(12,70,43)(13,71,44)(14,72,45)(15,73,46)(16,74,47)(17,75,48)(18,76,49)(19,77,50)(20,78,51)(21,79,52)(22,80,53)(23,81,54)(24,82,55)(25,83,56)(26,84,57)(27,85,58)(28,86,59)(29,87,60)(30,88,61)(31,89,62)(32,90,63)(33,91,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90) );

G=PermutationGroup([[(1,92,65),(2,93,66),(3,94,34),(4,95,35),(5,96,36),(6,97,37),(7,98,38),(8,99,39),(9,67,40),(10,68,41),(11,69,42),(12,70,43),(13,71,44),(14,72,45),(15,73,46),(16,74,47),(17,75,48),(18,76,49),(19,77,50),(20,78,51),(21,79,52),(22,80,53),(23,81,54),(24,82,55),(25,83,56),(26,84,57),(27,85,58),(28,86,59),(29,87,60),(30,88,61),(31,89,62),(32,90,63),(33,91,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,89),(35,88),(36,87),(37,86),(38,85),(39,84),(40,83),(41,82),(42,81),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90)]])

C3⋊D33 is a maximal subgroup of   C3⋊S3×D11  S3×D33
C3⋊D33 is a maximal quotient of   C3⋊Dic33

51 conjugacy classes

class 1  2 3A3B3C3D11A···11E33A···33AN
order12333311···1133···33
size19922222···22···2

51 irreducible representations

dim11222
type+++++
imageC1C2S3D11D33
kernelC3⋊D33C3×C33C33C32C3
# reps114540

Matrix representation of C3⋊D33 in GL4(𝔽67) generated by

584100
26800
005841
00268
,
315700
105300
006452
001530
,
315700
293600
003610
003831
G:=sub<GL(4,GF(67))| [58,26,0,0,41,8,0,0,0,0,58,26,0,0,41,8],[31,10,0,0,57,53,0,0,0,0,64,15,0,0,52,30],[31,29,0,0,57,36,0,0,0,0,36,38,0,0,10,31] >;

C3⋊D33 in GAP, Magma, Sage, TeX

C_3\rtimes D_{33}
% in TeX

G:=Group("C3:D33");
// GroupNames label

G:=SmallGroup(198,9);
// by ID

G=gap.SmallGroup(198,9);
# by ID

G:=PCGroup([4,-2,-3,-3,-11,33,146,2883]);
// Polycyclic

G:=Group<a,b,c|a^3=b^33=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D33 in TeX

׿
×
𝔽