direct product, metabelian, supersoluble, monomial, A-group
Aliases: S3×D33, C33⋊2D6, C3⋊1D66, C32⋊1D22, C11⋊1S32, (S3×C11)⋊S3, (C3×S3)⋊D11, C3⋊D33⋊2C2, C3⋊1(S3×D11), (S3×C33)⋊1C2, (C3×D33)⋊2C2, (C3×C33)⋊3C22, SmallGroup(396,22)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C33 — S3×D33 |
Generators and relations for S3×D33
G = < a,b,c,d | a3=b2=c33=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 23 12)(2 24 13)(3 25 14)(4 26 15)(5 27 16)(6 28 17)(7 29 18)(8 30 19)(9 31 20)(10 32 21)(11 33 22)(34 45 56)(35 46 57)(36 47 58)(37 48 59)(38 49 60)(39 50 61)(40 51 62)(41 52 63)(42 53 64)(43 54 65)(44 55 66)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 61)(9 62)(10 63)(11 64)(12 65)(13 66)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 41)(14 40)(15 39)(16 38)(17 37)(18 36)(19 35)(20 34)(21 66)(22 65)(23 64)(24 63)(25 62)(26 61)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 54)
G:=sub<Sym(66)| (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,66)(22,65)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)>;
G:=Group( (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,66)(22,65)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54) );
G=PermutationGroup([[(1,23,12),(2,24,13),(3,25,14),(4,26,15),(5,27,16),(6,28,17),(7,29,18),(8,30,19),(9,31,20),(10,32,21),(11,33,22),(34,45,56),(35,46,57),(36,47,58),(37,48,59),(38,49,60),(39,50,61),(40,51,62),(41,52,63),(42,53,64),(43,54,65),(44,55,66)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,61),(9,62),(10,63),(11,64),(12,65),(13,66),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,41),(14,40),(15,39),(16,38),(17,37),(18,36),(19,35),(20,34),(21,66),(22,65),(23,64),(24,63),(25,62),(26,61),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,54)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | 11A | ··· | 11E | 22A | ··· | 22E | 33A | ··· | 33J | 33K | ··· | 33Y | 66A | ··· | 66J |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 33 | ··· | 33 | 33 | ··· | 33 | 66 | ··· | 66 |
size | 1 | 3 | 33 | 99 | 2 | 2 | 4 | 6 | 66 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | S3 | D6 | D11 | D22 | D33 | D66 | S32 | S3×D11 | S3×D33 |
kernel | S3×D33 | S3×C33 | C3×D33 | C3⋊D33 | S3×C11 | D33 | C33 | C3×S3 | C32 | S3 | C3 | C11 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 5 | 5 | 10 | 10 | 1 | 5 | 10 |
Matrix representation of S3×D33 ►in GL6(𝔽67)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 66 | 1 |
0 | 0 | 0 | 0 | 66 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 66 | 0 | 0 | 0 |
0 | 0 | 0 | 66 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
28 | 41 | 0 | 0 | 0 | 0 |
26 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 66 | 0 | 0 |
0 | 0 | 1 | 66 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 53 | 0 | 0 | 0 | 0 |
58 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 66 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(67))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,66,66,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,66,0,0,0,0,0,0,66,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[28,26,0,0,0,0,41,7,0,0,0,0,0,0,0,1,0,0,0,0,66,66,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,58,0,0,0,0,53,64,0,0,0,0,0,0,66,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S3×D33 in GAP, Magma, Sage, TeX
S_3\times D_{33}
% in TeX
G:=Group("S3xD33");
// GroupNames label
G:=SmallGroup(396,22);
// by ID
G=gap.SmallGroup(396,22);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-11,67,483,9004]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^33=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export