direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×C17⋊C4, C17⋊C12, C51⋊2C4, D17.C6, (C3×D17).2C2, SmallGroup(204,5)
Series: Derived ►Chief ►Lower central ►Upper central
C17 — C3×C17⋊C4 |
Generators and relations for C3×C17⋊C4
G = < a,b,c | a3=b17=c4=1, ab=ba, ac=ca, cbc-1=b4 >
Character table of C3×C17⋊C4
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 12A | 12B | 12C | 12D | 17A | 17B | 17C | 17D | 51A | 51B | 51C | 51D | 51E | 51F | 51G | 51H | |
size | 1 | 17 | 1 | 1 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 12 |
ρ10 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 12 |
ρ11 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 12 |
ρ12 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 12 |
ρ13 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | orthogonal lifted from C17⋊C4 |
ρ14 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | orthogonal lifted from C17⋊C4 |
ρ15 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | orthogonal lifted from C17⋊C4 |
ρ16 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | orthogonal lifted from C17⋊C4 |
ρ17 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | complex faithful |
ρ18 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | complex faithful |
ρ19 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | complex faithful |
ρ20 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | complex faithful |
ρ21 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | complex faithful |
ρ22 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | complex faithful |
ρ23 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | complex faithful |
ρ24 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176 | ζ32ζ1714+ζ32ζ1712+ζ32ζ175+ζ32ζ173 | ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176 | ζ32ζ1716+ζ32ζ1713+ζ32ζ174+ζ32ζ17 | ζ32ζ1715+ζ32ζ179+ζ32ζ178+ζ32ζ172 | ζ3ζ1716+ζ3ζ1713+ζ3ζ174+ζ3ζ17 | ζ3ζ1715+ζ3ζ179+ζ3ζ178+ζ3ζ172 | ζ3ζ1714+ζ3ζ1712+ζ3ζ175+ζ3ζ173 | complex faithful |
(1 35 18)(2 36 19)(3 37 20)(4 38 21)(5 39 22)(6 40 23)(7 41 24)(8 42 25)(9 43 26)(10 44 27)(11 45 28)(12 46 29)(13 47 30)(14 48 31)(15 49 32)(16 50 33)(17 51 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(2 14 17 5)(3 10 16 9)(4 6 15 13)(7 11 12 8)(19 31 34 22)(20 27 33 26)(21 23 32 30)(24 28 29 25)(36 48 51 39)(37 44 50 43)(38 40 49 47)(41 45 46 42)
G:=sub<Sym(51)| (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42)>;
G:=Group( (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42) );
G=PermutationGroup([[(1,35,18),(2,36,19),(3,37,20),(4,38,21),(5,39,22),(6,40,23),(7,41,24),(8,42,25),(9,43,26),(10,44,27),(11,45,28),(12,46,29),(13,47,30),(14,48,31),(15,49,32),(16,50,33),(17,51,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(2,14,17,5),(3,10,16,9),(4,6,15,13),(7,11,12,8),(19,31,34,22),(20,27,33,26),(21,23,32,30),(24,28,29,25),(36,48,51,39),(37,44,50,43),(38,40,49,47),(41,45,46,42)]])
C3×C17⋊C4 is a maximal subgroup of
C51⋊C8
Matrix representation of C3×C17⋊C4 ►in GL4(𝔽409) generated by
53 | 0 | 0 | 0 |
0 | 53 | 0 | 0 |
0 | 0 | 53 | 0 |
0 | 0 | 0 | 53 |
0 | 0 | 0 | 408 |
1 | 0 | 0 | 392 |
0 | 1 | 0 | 48 |
0 | 0 | 1 | 392 |
1 | 1 | 49 | 17 |
0 | 377 | 14 | 288 |
0 | 378 | 103 | 394 |
0 | 18 | 32 | 337 |
G:=sub<GL(4,GF(409))| [53,0,0,0,0,53,0,0,0,0,53,0,0,0,0,53],[0,1,0,0,0,0,1,0,0,0,0,1,408,392,48,392],[1,0,0,0,1,377,378,18,49,14,103,32,17,288,394,337] >;
C3×C17⋊C4 in GAP, Magma, Sage, TeX
C_3\times C_{17}\rtimes C_4
% in TeX
G:=Group("C3xC17:C4");
// GroupNames label
G:=SmallGroup(204,5);
// by ID
G=gap.SmallGroup(204,5);
# by ID
G:=PCGroup([4,-2,-3,-2,-17,24,2499,523]);
// Polycyclic
G:=Group<a,b,c|a^3=b^17=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export
Subgroup lattice of C3×C17⋊C4 in TeX
Character table of C3×C17⋊C4 in TeX