extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C3×S3) = C9×S4 | φ: C3×S3/C3 → S3 ⊆ Aut C2×C6 | 36 | 3 | (C2xC6).1(C3xS3) | 216,89 |
(C2×C6).2(C3×S3) = C32.S4 | φ: C3×S3/C3 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).2(C3xS3) | 216,90 |
(C2×C6).3(C3×S3) = C3×C3.S4 | φ: C3×S3/C3 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).3(C3xS3) | 216,91 |
(C2×C6).4(C3×S3) = C62⋊S3 | φ: C3×S3/C3 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).4(C3xS3) | 216,92 |
(C2×C6).5(C3×S3) = D9⋊A4 | φ: C3×S3/C3 → C6 ⊆ Aut C2×C6 | 36 | 6+ | (C2xC6).5(C3xS3) | 216,96 |
(C2×C6).6(C3×S3) = A4×D9 | φ: C3×S3/C3 → C6 ⊆ Aut C2×C6 | 36 | 6+ | (C2xC6).6(C3xS3) | 216,97 |
(C2×C6).7(C3×S3) = C62⋊C6 | φ: C3×S3/C3 → C6 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).7(C3xS3) | 216,99 |
(C2×C6).8(C3×S3) = S3×C3.A4 | φ: C3×S3/S3 → C3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).8(C3xS3) | 216,98 |
(C2×C6).9(C3×S3) = C9×C3⋊D4 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | 2 | (C2xC6).9(C3xS3) | 216,58 |
(C2×C6).10(C3×S3) = C6×Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).10(C3xS3) | 216,55 |
(C2×C6).11(C3×S3) = C3×C9⋊D4 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | 2 | (C2xC6).11(C3xS3) | 216,57 |
(C2×C6).12(C3×S3) = C2×C32⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).12(C3xS3) | 216,59 |
(C2×C6).13(C3×S3) = He3⋊6D4 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).13(C3xS3) | 216,60 |
(C2×C6).14(C3×S3) = C2×C9⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).14(C3xS3) | 216,61 |
(C2×C6).15(C3×S3) = Dic9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).15(C3xS3) | 216,62 |
(C2×C6).16(C3×S3) = C2×C6×D9 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).16(C3xS3) | 216,108 |
(C2×C6).17(C3×S3) = C22×C32⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | | (C2xC6).17(C3xS3) | 216,110 |
(C2×C6).18(C3×S3) = C22×C9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 36 | | (C2xC6).18(C3xS3) | 216,111 |
(C2×C6).19(C3×S3) = C6×C3⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).19(C3xS3) | 216,143 |
(C2×C6).20(C3×S3) = Dic3×C18 | central extension (φ=1) | 72 | | (C2xC6).20(C3xS3) | 216,56 |
(C2×C6).21(C3×S3) = S3×C2×C18 | central extension (φ=1) | 72 | | (C2xC6).21(C3xS3) | 216,109 |
(C2×C6).22(C3×S3) = Dic3×C3×C6 | central extension (φ=1) | 72 | | (C2xC6).22(C3xS3) | 216,138 |