direct product, non-abelian, soluble, monomial
Aliases: C3×C3⋊S4, C62⋊8S3, C32⋊3S4, C3⋊(C3×S4), A4⋊(C3×S3), (C3×A4)⋊3S3, (C3×A4)⋊4C6, (C32×A4)⋊2C2, C22⋊(C3×C3⋊S3), (C2×C6)⋊2(C3×S3), (C2×C6)⋊1(C3⋊S3), SmallGroup(216,164)
Series: Derived ►Chief ►Lower central ►Upper central
C3×A4 — C3×C3⋊S4 |
Generators and relations for C3×C3⋊S4
G = < a,b,c,d,e,f | a3=b3=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 360 in 77 conjugacy classes, 18 normal (12 characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, D4, C32, C32, Dic3, C12, A4, A4, D6, C2×C6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3⋊D4, C3×D4, S4, C33, C3×Dic3, C3×A4, C3×A4, C3×A4, S3×C6, C62, C3×C3⋊S3, C3×C3⋊D4, C3×S4, C3⋊S4, C32×A4, C3×C3⋊S4
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, S4, C3×C3⋊S3, C3×S4, C3⋊S4, C3×C3⋊S4
Character table of C3×C3⋊S4
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 3 | 18 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 18 | 3 | 3 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | -1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | -1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | ζ65 | -1+√-3 | -1 | -1 | 2 | ζ6 | -1-√-3 | ζ6 | ζ65 | 0 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ12 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 2 | ζ65 | ζ65 | -1 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | 2 | -1+√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ13 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 2 | ζ6 | ζ6 | -1 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | 2 | -1-√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ14 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | -1+√-3 | ζ65 | 2 | -1 | -1 | ζ6 | ζ6 | -1-√-3 | ζ65 | 0 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ15 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | ζ6 | ζ6 | -1 | 2 | -1 | -1+√-3 | ζ65 | ζ65 | -1-√-3 | 0 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ16 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | -1-√-3 | ζ6 | 2 | -1 | -1 | ζ65 | ζ65 | -1+√-3 | ζ6 | 0 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | ζ6 | -1-√-3 | -1 | -1 | 2 | ζ65 | -1+√-3 | ζ65 | ζ6 | 0 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ18 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | ζ65 | ζ65 | -1 | 2 | -1 | -1-√-3 | ζ6 | ζ6 | -1+√-3 | 0 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 3 | -1 | -1 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ20 | 3 | -1 | 1 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from S4 |
ρ21 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | ζ3 | ζ32 | complex lifted from C3×S4 |
ρ22 | 3 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ3 | ζ32 | ζ65 | ζ6 | complex lifted from C3×S4 |
ρ23 | 3 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ32 | ζ3 | ζ6 | ζ65 | complex lifted from C3×S4 |
ρ24 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | ζ32 | ζ3 | complex lifted from C3×S4 |
ρ25 | 6 | -2 | 0 | 6 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊S4 |
ρ26 | 6 | -2 | 0 | -3+3√-3 | -3-3√-3 | 3+3√-3/2 | 3-3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | ζ32 | 1 | ζ3 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 6 | -2 | 0 | -3-3√-3 | -3+3√-3 | 3-3√-3/2 | 3+3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | ζ3 | 1 | ζ32 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 3 2)(4 5 6)(7 8 9)(10 12 11)(13 15 14)(16 17 18)(19 21 20)(22 23 24)
(1 14)(2 15)(3 13)(4 17)(5 18)(6 16)(7 23)(8 24)(9 22)(10 20)(11 21)(12 19)
(1 21)(2 19)(3 20)(4 8)(5 9)(6 7)(10 13)(11 14)(12 15)(16 23)(17 24)(18 22)
(1 2 3)(4 16 22)(5 17 23)(6 18 24)(7 9 8)(10 14 19)(11 15 20)(12 13 21)
(1 7)(2 8)(3 9)(4 19)(5 20)(6 21)(10 22)(11 23)(12 24)(13 18)(14 16)(15 17)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,3,2)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24), (1,14)(2,15)(3,13)(4,17)(5,18)(6,16)(7,23)(8,24)(9,22)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (1,2,3)(4,16,22)(5,17,23)(6,18,24)(7,9,8)(10,14,19)(11,15,20)(12,13,21), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,3,2)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24), (1,14)(2,15)(3,13)(4,17)(5,18)(6,16)(7,23)(8,24)(9,22)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (1,2,3)(4,16,22)(5,17,23)(6,18,24)(7,9,8)(10,14,19)(11,15,20)(12,13,21), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,3,2),(4,5,6),(7,8,9),(10,12,11),(13,15,14),(16,17,18),(19,21,20),(22,23,24)], [(1,14),(2,15),(3,13),(4,17),(5,18),(6,16),(7,23),(8,24),(9,22),(10,20),(11,21),(12,19)], [(1,21),(2,19),(3,20),(4,8),(5,9),(6,7),(10,13),(11,14),(12,15),(16,23),(17,24),(18,22)], [(1,2,3),(4,16,22),(5,17,23),(6,18,24),(7,9,8),(10,14,19),(11,15,20),(12,13,21)], [(1,7),(2,8),(3,9),(4,19),(5,20),(6,21),(10,22),(11,23),(12,24),(13,18),(14,16),(15,17)]])
G:=TransitiveGroup(24,564);
C3×C3⋊S4 is a maximal subgroup of
C3×S3×S4 C62⋊10D6
Matrix representation of C3×C3⋊S4 ►in GL5(𝔽13)
3 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
0 | 12 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 1 |
0 | 0 | 12 | 1 | 0 |
12 | 1 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 12 |
0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 1 | 12 |
0 | 12 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(13))| [3,0,0,0,0,0,3,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[0,1,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[12,12,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,12,12],[0,12,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C3×C3⋊S4 in GAP, Magma, Sage, TeX
C_3\times C_3\rtimes S_4
% in TeX
G:=Group("C3xC3:S4");
// GroupNames label
G:=SmallGroup(216,164);
// by ID
G=gap.SmallGroup(216,164);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-2,2,218,867,3244,556,1949,989]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export