Extensions 1→N→G→Q→1 with N=C3×A4 and Q=S3

Direct product G=N×Q with N=C3×A4 and Q=S3
dρLabelID
C3×S3×A4246C3xS3xA4216,166

Semidirect products G=N:Q with N=C3×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊1S3 = C32⋊S4φ: S3/C1S3 ⊆ Out C3×A4183(C3xA4):1S3216,95
(C3×A4)⋊2S3 = C62⋊C6φ: S3/C1S3 ⊆ Out C3×A4186+(C3xA4):2S3216,99
(C3×A4)⋊3S3 = C3×C3⋊S4φ: S3/C3C2 ⊆ Out C3×A4246(C3xA4):3S3216,164
(C3×A4)⋊4S3 = C324S4φ: S3/C3C2 ⊆ Out C3×A436(C3xA4):4S3216,165
(C3×A4)⋊5S3 = A4×C3⋊S3φ: S3/C3C2 ⊆ Out C3×A436(C3xA4):5S3216,167

Non-split extensions G=N.Q with N=C3×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×A4).S3 = D9⋊A4φ: S3/C1S3 ⊆ Out C3×A4366+(C3xA4).S3216,96
(C3×A4).2S3 = C9⋊S4φ: S3/C3C2 ⊆ Out C3×A4366+(C3xA4).2S3216,93
(C3×A4).3S3 = A4×D9φ: S3/C3C2 ⊆ Out C3×A4366+(C3xA4).3S3216,97

׿
×
𝔽