Extensions 1→N→G→Q→1 with N=C3xA4 and Q=S3

Direct product G=NxQ with N=C3xA4 and Q=S3
dρLabelID
C3xS3xA4246C3xS3xA4216,166

Semidirect products G=N:Q with N=C3xA4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xA4):1S3 = C32:S4φ: S3/C1S3 ⊆ Out C3xA4183(C3xA4):1S3216,95
(C3xA4):2S3 = C62:C6φ: S3/C1S3 ⊆ Out C3xA4186+(C3xA4):2S3216,99
(C3xA4):3S3 = C3xC3:S4φ: S3/C3C2 ⊆ Out C3xA4246(C3xA4):3S3216,164
(C3xA4):4S3 = C32:4S4φ: S3/C3C2 ⊆ Out C3xA436(C3xA4):4S3216,165
(C3xA4):5S3 = A4xC3:S3φ: S3/C3C2 ⊆ Out C3xA436(C3xA4):5S3216,167

Non-split extensions G=N.Q with N=C3xA4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3xA4).S3 = D9:A4φ: S3/C1S3 ⊆ Out C3xA4366+(C3xA4).S3216,96
(C3xA4).2S3 = C9:S4φ: S3/C3C2 ⊆ Out C3xA4366+(C3xA4).2S3216,93
(C3xA4).3S3 = A4xD9φ: S3/C3C2 ⊆ Out C3xA4366+(C3xA4).3S3216,97

׿
x
:
Z
F
o
wr
Q
<