Copied to
clipboard

G = D5wrC2order 200 = 23·52

Wreath product of D5 by C2

non-abelian, soluble, monomial

Aliases: D5wrC2, C52:D4, D52:C2, C52:C4:2C2, C5:D5.2C22, SmallGroup(200,43)

Series: Derived Chief Lower central Upper central

C1C52C5:D5 — D5wrC2
C1C52C5:D5D52 — D5wrC2
C52C5:D5 — D5wrC2
C1

Generators and relations for D5wrC2
 G = < a,b,c,d | a5=b5=c4=d2=1, ab=ba, cac-1=dbd=a2, dad=cbc-1=b3, dcd=c-1 >

Subgroups: 246 in 29 conjugacy classes, 7 normal (5 characteristic)
Quotients: C1, C2, C22, D4, D5wrC2
10C2
10C2
25C2
2C5
2C5
2C5
25C22
25C4
25C22
2D5
2D5
10D5
10D5
10C10
10C10
10D5
25D4
10D10
10D10
10F5
2C5xD5
2C5xD5

Character table of D5wrC2

 class 12A2B2C45A5B5C5D5E10A10B10C10D
 size 1101025504444820202020
ρ111111111111111    trivial
ρ21-111-111111-111-1    linear of order 2
ρ31-1-11111111-1-1-1-1    linear of order 2
ρ411-11-1111111-1-11    linear of order 2
ρ5200-20222220000    orthogonal lifted from D4
ρ640-2003+5/23-5/2-1-5-1+5-101+5/21-5/20    orthogonal faithful
ρ740-2003-5/23+5/2-1+5-1-5-101-5/21+5/20    orthogonal faithful
ρ842000-1+5-1-53+5/23-5/2-1-1+5/200-1-5/2    orthogonal faithful
ρ942000-1-5-1+53-5/23+5/2-1-1-5/200-1+5/2    orthogonal faithful
ρ10402003-5/23+5/2-1+5-1-5-10-1+5/2-1-5/20    orthogonal faithful
ρ11402003+5/23-5/2-1-5-1+5-10-1-5/2-1+5/20    orthogonal faithful
ρ124-2000-1-5-1+53-5/23+5/2-11+5/2001-5/2    orthogonal faithful
ρ134-2000-1+5-1-53+5/23-5/2-11-5/2001+5/2    orthogonal faithful
ρ1480000-2-2-2-230000    orthogonal faithful

Permutation representations of D5wrC2
On 10 points - transitive group 10T19
Generators in S10
(6 7 8 9 10)
(1 5 4 3 2)
(2 3 5 4)(7 9 10 8)
(1 6)(2 9)(3 7)(4 10)(5 8)

G:=sub<Sym(10)| (6,7,8,9,10), (1,5,4,3,2), (2,3,5,4)(7,9,10,8), (1,6)(2,9)(3,7)(4,10)(5,8)>;

G:=Group( (6,7,8,9,10), (1,5,4,3,2), (2,3,5,4)(7,9,10,8), (1,6)(2,9)(3,7)(4,10)(5,8) );

G=PermutationGroup([[(6,7,8,9,10)], [(1,5,4,3,2)], [(2,3,5,4),(7,9,10,8)], [(1,6),(2,9),(3,7),(4,10),(5,8)]])

G:=TransitiveGroup(10,19);

On 10 points - transitive group 10T21
Generators in S10
(1 2 3 4 5)(6 7 8 9 10)
(1 2 3 4 5)(6 10 9 8 7)
(1 8)(2 6 5 10)(3 9 4 7)
(1 8)(2 10)(3 7)(4 9)(5 6)

G:=sub<Sym(10)| (1,2,3,4,5)(6,7,8,9,10), (1,2,3,4,5)(6,10,9,8,7), (1,8)(2,6,5,10)(3,9,4,7), (1,8)(2,10)(3,7)(4,9)(5,6)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10), (1,2,3,4,5)(6,10,9,8,7), (1,8)(2,6,5,10)(3,9,4,7), (1,8)(2,10)(3,7)(4,9)(5,6) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10)], [(1,2,3,4,5),(6,10,9,8,7)], [(1,8),(2,6,5,10),(3,9,4,7)], [(1,8),(2,10),(3,7),(4,9),(5,6)]])

G:=TransitiveGroup(10,21);

On 20 points - transitive group 20T48
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 2 3 4 5)(6 7 8 9 10)(11 15 14 13 12)(16 20 19 18 17)
(1 17 6 13)(2 20 10 15)(3 18 9 12)(4 16 8 14)(5 19 7 11)
(1 13)(2 15)(3 12)(4 14)(5 11)(6 17)(7 19)(8 16)(9 18)(10 20)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10)(11,15,14,13,12)(16,20,19,18,17), (1,17,6,13)(2,20,10,15)(3,18,9,12)(4,16,8,14)(5,19,7,11), (1,13)(2,15)(3,12)(4,14)(5,11)(6,17)(7,19)(8,16)(9,18)(10,20)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10)(11,15,14,13,12)(16,20,19,18,17), (1,17,6,13)(2,20,10,15)(3,18,9,12)(4,16,8,14)(5,19,7,11), (1,13)(2,15)(3,12)(4,14)(5,11)(6,17)(7,19)(8,16)(9,18)(10,20) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,15,14,13,12),(16,20,19,18,17)], [(1,17,6,13),(2,20,10,15),(3,18,9,12),(4,16,8,14),(5,19,7,11)], [(1,13),(2,15),(3,12),(4,14),(5,11),(6,17),(7,19),(8,16),(9,18),(10,20)]])

G:=TransitiveGroup(20,48);

On 20 points - transitive group 20T50
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 3 5 2 4)(6 9 7 10 8)(11 13 15 12 14)(16 19 17 20 18)
(1 16)(2 19 5 18)(3 17 4 20)(6 14 7 12)(8 15 10 11)(9 13)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 19)(7 18)(8 17)(9 16)(10 20)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,3,5,2,4)(6,9,7,10,8)(11,13,15,12,14)(16,19,17,20,18), (1,16)(2,19,5,18)(3,17,4,20)(6,14,7,12)(8,15,10,11)(9,13), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,18)(8,17)(9,16)(10,20)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,3,5,2,4)(6,9,7,10,8)(11,13,15,12,14)(16,19,17,20,18), (1,16)(2,19,5,18)(3,17,4,20)(6,14,7,12)(8,15,10,11)(9,13), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,18)(8,17)(9,16)(10,20) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,3,5,2,4),(6,9,7,10,8),(11,13,15,12,14),(16,19,17,20,18)], [(1,16),(2,19,5,18),(3,17,4,20),(6,14,7,12),(8,15,10,11),(9,13)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,19),(7,18),(8,17),(9,16),(10,20)]])

G:=TransitiveGroup(20,50);

On 20 points - transitive group 20T55
Generators in S20
(11 12 13 14 15)(16 17 18 19 20)
(1 5 4 3 2)(6 9 7 10 8)
(1 8)(2 7 5 9)(3 6 4 10)(11 17 13 18)(12 20)(14 16 15 19)
(1 20)(2 18)(3 16)(4 19)(5 17)(6 14)(7 13)(8 12)(9 11)(10 15)

G:=sub<Sym(20)| (11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,9,7,10,8), (1,8)(2,7,5,9)(3,6,4,10)(11,17,13,18)(12,20)(14,16,15,19), (1,20)(2,18)(3,16)(4,19)(5,17)(6,14)(7,13)(8,12)(9,11)(10,15)>;

G:=Group( (11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,9,7,10,8), (1,8)(2,7,5,9)(3,6,4,10)(11,17,13,18)(12,20)(14,16,15,19), (1,20)(2,18)(3,16)(4,19)(5,17)(6,14)(7,13)(8,12)(9,11)(10,15) );

G=PermutationGroup([[(11,12,13,14,15),(16,17,18,19,20)], [(1,5,4,3,2),(6,9,7,10,8)], [(1,8),(2,7,5,9),(3,6,4,10),(11,17,13,18),(12,20),(14,16,15,19)], [(1,20),(2,18),(3,16),(4,19),(5,17),(6,14),(7,13),(8,12),(9,11),(10,15)]])

G:=TransitiveGroup(20,55);

On 20 points - transitive group 20T57
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 5 4 3 2)(6 10 9 8 7)(11 12 13 14 15)(16 17 18 19 20)
(1 17 9 13)(2 20 8 15)(3 18 7 12)(4 16 6 14)(5 19 10 11)
(1 13)(2 11)(3 14)(4 12)(5 15)(6 18)(7 16)(8 19)(9 17)(10 20)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,17,9,13)(2,20,8,15)(3,18,7,12)(4,16,6,14)(5,19,10,11), (1,13)(2,11)(3,14)(4,12)(5,15)(6,18)(7,16)(8,19)(9,17)(10,20)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,17,9,13)(2,20,8,15)(3,18,7,12)(4,16,6,14)(5,19,10,11), (1,13)(2,11)(3,14)(4,12)(5,15)(6,18)(7,16)(8,19)(9,17)(10,20) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,5,4,3,2),(6,10,9,8,7),(11,12,13,14,15),(16,17,18,19,20)], [(1,17,9,13),(2,20,8,15),(3,18,7,12),(4,16,6,14),(5,19,10,11)], [(1,13),(2,11),(3,14),(4,12),(5,15),(6,18),(7,16),(8,19),(9,17),(10,20)]])

G:=TransitiveGroup(20,57);

On 25 points: primitive - transitive group 25T21
Generators in S25
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 25 19 14 9)(2 21 20 15 10)(3 22 16 11 6)(4 23 17 12 7)(5 24 18 13 8)
(2 4 5 3)(6 15 23 18)(7 13 22 20)(8 11 21 17)(9 14 25 19)(10 12 24 16)
(2 14)(3 25)(4 9)(5 19)(6 23)(8 17)(10 12)(11 21)(13 20)(16 24)

G:=sub<Sym(25)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,19,14,9)(2,21,20,15,10)(3,22,16,11,6)(4,23,17,12,7)(5,24,18,13,8), (2,4,5,3)(6,15,23,18)(7,13,22,20)(8,11,21,17)(9,14,25,19)(10,12,24,16), (2,14)(3,25)(4,9)(5,19)(6,23)(8,17)(10,12)(11,21)(13,20)(16,24)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,19,14,9)(2,21,20,15,10)(3,22,16,11,6)(4,23,17,12,7)(5,24,18,13,8), (2,4,5,3)(6,15,23,18)(7,13,22,20)(8,11,21,17)(9,14,25,19)(10,12,24,16), (2,14)(3,25)(4,9)(5,19)(6,23)(8,17)(10,12)(11,21)(13,20)(16,24) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,25,19,14,9),(2,21,20,15,10),(3,22,16,11,6),(4,23,17,12,7),(5,24,18,13,8)], [(2,4,5,3),(6,15,23,18),(7,13,22,20),(8,11,21,17),(9,14,25,19),(10,12,24,16)], [(2,14),(3,25),(4,9),(5,19),(6,23),(8,17),(10,12),(11,21),(13,20),(16,24)]])

G:=TransitiveGroup(25,21);

D5wrC2 is a maximal subgroup of   D5wrC2:C2
D5wrC2 is a maximal quotient of   D52:C4  C2.D5wrC2  C52:D8  C52:SD16  C52:Q16

Polynomial with Galois group D5wrC2 over Q
actionf(x)Disc(f)
10T19x10+2x9-35x8-80x7+419x6+1106x5-1843x4-6208x3+869x2+11495x+665534·511·116·234·895
10T21x10+2x9-18x8-12x7+66x6+42x5-68x4-52x3+16x2+20x+4218·55·114·1012

Matrix representation of D5wrC2 in GL4(F41) generated by

0700
35600
00401
00535
,
40100
53500
0007
00356
,
0061
00635
1000
0100
,
1000
0100
0061
00635
G:=sub<GL(4,GF(41))| [0,35,0,0,7,6,0,0,0,0,40,5,0,0,1,35],[40,5,0,0,1,35,0,0,0,0,0,35,0,0,7,6],[0,0,1,0,0,0,0,1,6,6,0,0,1,35,0,0],[1,0,0,0,0,1,0,0,0,0,6,6,0,0,1,35] >;

D5wrC2 in GAP, Magma, Sage, TeX

D_5\wr C_2
% in TeX

G:=Group("D5wrC2");
// GroupNames label

G:=SmallGroup(200,43);
// by ID

G=gap.SmallGroup(200,43);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,5,61,2403,408,173,404,109,1014]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^4=d^2=1,a*b=b*a,c*a*c^-1=d*b*d=a^2,d*a*d=c*b*c^-1=b^3,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5wrC2 in TeX
Character table of D5wrC2 in TeX

׿
x
:
Z
F
o
wr
Q
<