Copied to
clipboard

G = D5xC21order 210 = 2·3·5·7

Direct product of C21 and D5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D5xC21, C5:C42, C35:7C6, C15:2C14, C105:6C2, SmallGroup(210,6)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC21
C1C5C35C105 — D5xC21
C5 — D5xC21
C1C21

Generators and relations for D5xC21
 G = < a,b,c | a21=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 32 in 16 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C3, C6, C7, D5, C14, C21, C3xD5, C42, C7xD5, D5xC21
5C2
5C6
5C14
5C42

Smallest permutation representation of D5xC21
On 105 points
Generators in S105
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 64 96 31 44)(2 65 97 32 45)(3 66 98 33 46)(4 67 99 34 47)(5 68 100 35 48)(6 69 101 36 49)(7 70 102 37 50)(8 71 103 38 51)(9 72 104 39 52)(10 73 105 40 53)(11 74 85 41 54)(12 75 86 42 55)(13 76 87 22 56)(14 77 88 23 57)(15 78 89 24 58)(16 79 90 25 59)(17 80 91 26 60)(18 81 92 27 61)(19 82 93 28 62)(20 83 94 29 63)(21 84 95 30 43)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 61)(19 62)(20 63)(21 43)(22 76)(23 77)(24 78)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)

G:=sub<Sym(105)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,64,96,31,44)(2,65,97,32,45)(3,66,98,33,46)(4,67,99,34,47)(5,68,100,35,48)(6,69,101,36,49)(7,70,102,37,50)(8,71,103,38,51)(9,72,104,39,52)(10,73,105,40,53)(11,74,85,41,54)(12,75,86,42,55)(13,76,87,22,56)(14,77,88,23,57)(15,78,89,24,58)(16,79,90,25,59)(17,80,91,26,60)(18,81,92,27,61)(19,82,93,28,62)(20,83,94,29,63)(21,84,95,30,43), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,62)(20,63)(21,43)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,64,96,31,44)(2,65,97,32,45)(3,66,98,33,46)(4,67,99,34,47)(5,68,100,35,48)(6,69,101,36,49)(7,70,102,37,50)(8,71,103,38,51)(9,72,104,39,52)(10,73,105,40,53)(11,74,85,41,54)(12,75,86,42,55)(13,76,87,22,56)(14,77,88,23,57)(15,78,89,24,58)(16,79,90,25,59)(17,80,91,26,60)(18,81,92,27,61)(19,82,93,28,62)(20,83,94,29,63)(21,84,95,30,43), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,61)(19,62)(20,63)(21,43)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,64,96,31,44),(2,65,97,32,45),(3,66,98,33,46),(4,67,99,34,47),(5,68,100,35,48),(6,69,101,36,49),(7,70,102,37,50),(8,71,103,38,51),(9,72,104,39,52),(10,73,105,40,53),(11,74,85,41,54),(12,75,86,42,55),(13,76,87,22,56),(14,77,88,23,57),(15,78,89,24,58),(16,79,90,25,59),(17,80,91,26,60),(18,81,92,27,61),(19,82,93,28,62),(20,83,94,29,63),(21,84,95,30,43)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,61),(19,62),(20,63),(21,43),(22,76),(23,77),(24,78),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75)]])

D5xC21 is a maximal subgroup of   C5:Dic21

84 conjugacy classes

class 1  2 3A3B5A5B6A6B7A···7F14A···14F15A15B15C15D21A···21L35A···35L42A···42L105A···105X
order123355667···714···141515151521···2135···3542···42105···105
size151122551···15···522221···12···25···52···2

84 irreducible representations

dim111111112222
type+++
imageC1C2C3C6C7C14C21C42D5C3xD5C7xD5D5xC21
kernelD5xC21C105C7xD5C35C3xD5C15D5C5C21C7C3C1
# reps1122661212241224

Matrix representation of D5xC21 in GL3(F211) generated by

5800
0140
0014
,
100
001
0210178
,
21000
001
010
G:=sub<GL(3,GF(211))| [58,0,0,0,14,0,0,0,14],[1,0,0,0,0,210,0,1,178],[210,0,0,0,0,1,0,1,0] >;

D5xC21 in GAP, Magma, Sage, TeX

D_5\times C_{21}
% in TeX

G:=Group("D5xC21");
// GroupNames label

G:=SmallGroup(210,6);
// by ID

G=gap.SmallGroup(210,6);
# by ID

G:=PCGroup([4,-2,-3,-7,-5,2691]);
// Polycyclic

G:=Group<a,b,c|a^21=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5xC21 in TeX

׿
x
:
Z
F
o
wr
Q
<