metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D97, C97⋊C2, sometimes denoted D194 or Dih97 or Dih194, SmallGroup(194,1)
Series: Derived ►Chief ►Lower central ►Upper central
C97 — D97 |
Generators and relations for D97
G = < a,b | a97=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97)
(1 97)(2 96)(3 95)(4 94)(5 93)(6 92)(7 91)(8 90)(9 89)(10 88)(11 87)(12 86)(13 85)(14 84)(15 83)(16 82)(17 81)(18 80)(19 79)(20 78)(21 77)(22 76)(23 75)(24 74)(25 73)(26 72)(27 71)(28 70)(29 69)(30 68)(31 67)(32 66)(33 65)(34 64)(35 63)(36 62)(37 61)(38 60)(39 59)(40 58)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)
G:=sub<Sym(97)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,81)(18,80)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,73)(26,72)(27,71)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,63)(36,62)(37,61)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97), (1,97)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,81)(18,80)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,73)(26,72)(27,71)(28,70)(29,69)(30,68)(31,67)(32,66)(33,65)(34,64)(35,63)(36,62)(37,61)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97)], [(1,97),(2,96),(3,95),(4,94),(5,93),(6,92),(7,91),(8,90),(9,89),(10,88),(11,87),(12,86),(13,85),(14,84),(15,83),(16,82),(17,81),(18,80),(19,79),(20,78),(21,77),(22,76),(23,75),(24,74),(25,73),(26,72),(27,71),(28,70),(29,69),(30,68),(31,67),(32,66),(33,65),(34,64),(35,63),(36,62),(37,61),(38,60),(39,59),(40,58),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50)]])
D97 is a maximal subgroup of
C97⋊C4
D97 is a maximal quotient of Dic97
50 conjugacy classes
class | 1 | 2 | 97A | ··· | 97AV |
order | 1 | 2 | 97 | ··· | 97 |
size | 1 | 97 | 2 | ··· | 2 |
50 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D97 |
kernel | D97 | C97 | C1 |
# reps | 1 | 1 | 48 |
Matrix representation of D97 ►in GL2(𝔽389) generated by
285 | 388 |
1 | 0 |
285 | 388 |
312 | 104 |
G:=sub<GL(2,GF(389))| [285,1,388,0],[285,312,388,104] >;
D97 in GAP, Magma, Sage, TeX
D_{97}
% in TeX
G:=Group("D97");
// GroupNames label
G:=SmallGroup(194,1);
// by ID
G=gap.SmallGroup(194,1);
# by ID
G:=PCGroup([2,-2,-97,769]);
// Polycyclic
G:=Group<a,b|a^97=b^2=1,b*a*b=a^-1>;
// generators/relations
Export