Aliases: He3⋊C8, C3.F9, He3⋊C2.C4, He3⋊C4.1C2, SmallGroup(216,86)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊C2 — He3⋊C4 — He3⋊C8 |
He3 — He3⋊C8 |
Generators and relations for He3⋊C8
G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, cac-1=ab-1, dad-1=c, bc=cb, dbd-1=b-1, dcd-1=ab-1c >
Character table of He3⋊C8
class | 1 | 2 | 3A | 3B | 4A | 4B | 6 | 8A | 8B | 8C | 8D | 12A | 12B | |
size | 1 | 9 | 2 | 24 | 9 | 9 | 18 | 27 | 27 | 27 | 27 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | 1 | 1 | -i | i | -1 | ζ8 | ζ83 | ζ85 | ζ87 | -i | i | linear of order 8 |
ρ6 | 1 | -1 | 1 | 1 | -i | i | -1 | ζ85 | ζ87 | ζ8 | ζ83 | -i | i | linear of order 8 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | -1 | ζ87 | ζ85 | ζ83 | ζ8 | i | -i | linear of order 8 |
ρ8 | 1 | -1 | 1 | 1 | i | -i | -1 | ζ83 | ζ8 | ζ87 | ζ85 | i | -i | linear of order 8 |
ρ9 | 6 | -2 | -3 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal faithful |
ρ10 | 6 | -2 | -3 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic faithful, Schur index 2 |
ρ11 | 6 | 2 | -3 | 0 | 2i | -2i | -1 | 0 | 0 | 0 | 0 | -i | i | complex faithful |
ρ12 | 6 | 2 | -3 | 0 | -2i | 2i | -1 | 0 | 0 | 0 | 0 | i | -i | complex faithful |
ρ13 | 8 | 0 | 8 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F9 |
(1 12 5)(2 9 20)(3 24 16)(4 6 14)(7 10 23)(8 22 13)(11 15 17)(18 25 19)(21 26 27)
(1 2 3)(4 15 27)(5 20 16)(6 17 21)(7 22 18)(8 19 23)(9 24 12)(10 13 25)(11 26 14)
(1 19 4)(2 23 15)(3 8 27)(5 13 11)(6 9 22)(7 21 12)(10 14 16)(17 24 18)(20 25 26)
(2 3)(4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,12,5)(2,9,20)(3,24,16)(4,6,14)(7,10,23)(8,22,13)(11,15,17)(18,25,19)(21,26,27), (1,2,3)(4,15,27)(5,20,16)(6,17,21)(7,22,18)(8,19,23)(9,24,12)(10,13,25)(11,26,14), (1,19,4)(2,23,15)(3,8,27)(5,13,11)(6,9,22)(7,21,12)(10,14,16)(17,24,18)(20,25,26), (2,3)(4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27)>;
G:=Group( (1,12,5)(2,9,20)(3,24,16)(4,6,14)(7,10,23)(8,22,13)(11,15,17)(18,25,19)(21,26,27), (1,2,3)(4,15,27)(5,20,16)(6,17,21)(7,22,18)(8,19,23)(9,24,12)(10,13,25)(11,26,14), (1,19,4)(2,23,15)(3,8,27)(5,13,11)(6,9,22)(7,21,12)(10,14,16)(17,24,18)(20,25,26), (2,3)(4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,12,5),(2,9,20),(3,24,16),(4,6,14),(7,10,23),(8,22,13),(11,15,17),(18,25,19),(21,26,27)], [(1,2,3),(4,15,27),(5,20,16),(6,17,21),(7,22,18),(8,19,23),(9,24,12),(10,13,25),(11,26,14)], [(1,19,4),(2,23,15),(3,8,27),(5,13,11),(6,9,22),(7,21,12),(10,14,16),(17,24,18),(20,25,26)], [(2,3),(4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,77);
He3⋊C8 is a maximal subgroup of
He3⋊SD16
He3⋊C8 is a maximal quotient of He3⋊C16
Matrix representation of He3⋊C8 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 1 | 2 | 1 |
0 | 1 | 1 | 0 | 1 | 2 |
0 | -1 | -1 | 0 | -1 | -1 |
-1 | -1 | 0 | -1 | -1 | -1 |
0 | -1 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
-1 | 0 | -1 | 0 | -1 | -1 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 2 | 1 |
1 | 0 | 2 | 0 | 1 | 2 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
-1 | 0 | -1 | -1 | -1 | -1 |
0 | -1 | -1 | 0 | -1 | -1 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
-1 | -1 | -1 | 0 | -1 | -2 |
-1 | -1 | 0 | -1 | -2 | -1 |
0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,-1,0,1,2,1,-1,-1,0,0,0,1,-1,0,0,0,1,0,0,-1,0,0,2,1,-1,-1,0,0,1,2,-1,-1],[0,1,0,0,-1,0,-1,-1,0,0,0,1,0,0,0,1,-1,0,0,0,-1,-1,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0],[0,1,0,0,-1,0,1,0,0,0,0,-1,1,2,1,0,-1,-1,0,0,0,1,-1,0,2,1,0,0,-1,-1,1,2,0,0,-1,-1],[0,0,-1,-1,0,1,0,0,-1,-1,1,0,-1,-1,-1,0,0,1,0,1,0,-1,0,0,0,0,-1,-2,1,0,0,0,-2,-1,0,1] >;
He3⋊C8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes C_8
% in TeX
G:=Group("He3:C8");
// GroupNames label
G:=SmallGroup(216,86);
// by ID
G=gap.SmallGroup(216,86);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,12,31,579,681,543,1684,3130,1456,652,5189]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=c,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a*b^-1*c>;
// generators/relations
Export
Subgroup lattice of He3⋊C8 in TeX
Character table of He3⋊C8 in TeX