Aliases: He3⋊SD16, SU3(𝔽2)⋊C2, C3.AΓL1(𝔽9), He3⋊C8⋊C2, He3⋊D4.C2, He3⋊C2.D4, He3⋊C4.C22, SmallGroup(432,520)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊C4 — He3⋊SD16 |
C1 — C3 — He3 — He3⋊C2 — He3⋊C4 — He3⋊C8 — He3⋊SD16 |
He3 — He3⋊C2 — He3⋊C4 — He3⋊SD16 |
Generators and relations for He3⋊SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=c, eae=a-1, bc=cb, dbd-1=ebe=b-1, dcd-1=ab-1c, ece=a-1b-1c, ede=d3 >
Character table of He3⋊SD16
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 12A | 12B | 12C | |
size | 1 | 9 | 36 | 2 | 24 | 18 | 36 | 18 | 72 | 54 | 54 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | -√-2 | √-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ7 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | √-2 | -√-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ8 | 6 | -2 | 0 | -3 | 0 | 2 | -2 | 1 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal faithful |
ρ9 | 6 | -2 | 0 | -3 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal faithful |
ρ10 | 6 | -2 | 0 | -3 | 0 | -2 | 0 | 1 | 0 | 0 | 0 | 1 | -√-3 | √-3 | complex faithful |
ρ11 | 6 | -2 | 0 | -3 | 0 | -2 | 0 | 1 | 0 | 0 | 0 | 1 | √-3 | -√-3 | complex faithful |
ρ12 | 8 | 0 | -2 | 8 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ13 | 8 | 0 | 2 | 8 | -1 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ14 | 12 | 4 | 0 | -6 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 18 11)(2 26 14)(3 7 22)(4 12 10)(5 8 25)(6 24 19)(9 13 15)(16 27 17)(20 21 23)
(1 3 2)(4 15 23)(5 24 16)(6 17 25)(7 26 18)(8 19 27)(9 20 12)(10 13 21)(11 22 14)
(1 17 10)(2 6 21)(3 25 13)(4 7 24)(5 23 18)(8 12 14)(9 11 19)(15 26 16)(20 22 27)
(2 3)(4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27)
(2 3)(4 13)(5 16)(6 19)(7 14)(8 17)(9 12)(10 15)(11 18)(21 23)(22 26)(25 27)
G:=sub<Sym(27)| (1,18,11)(2,26,14)(3,7,22)(4,12,10)(5,8,25)(6,24,19)(9,13,15)(16,27,17)(20,21,23), (1,3,2)(4,15,23)(5,24,16)(6,17,25)(7,26,18)(8,19,27)(9,20,12)(10,13,21)(11,22,14), (1,17,10)(2,6,21)(3,25,13)(4,7,24)(5,23,18)(8,12,14)(9,11,19)(15,26,16)(20,22,27), (2,3)(4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (2,3)(4,13)(5,16)(6,19)(7,14)(8,17)(9,12)(10,15)(11,18)(21,23)(22,26)(25,27)>;
G:=Group( (1,18,11)(2,26,14)(3,7,22)(4,12,10)(5,8,25)(6,24,19)(9,13,15)(16,27,17)(20,21,23), (1,3,2)(4,15,23)(5,24,16)(6,17,25)(7,26,18)(8,19,27)(9,20,12)(10,13,21)(11,22,14), (1,17,10)(2,6,21)(3,25,13)(4,7,24)(5,23,18)(8,12,14)(9,11,19)(15,26,16)(20,22,27), (2,3)(4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (2,3)(4,13)(5,16)(6,19)(7,14)(8,17)(9,12)(10,15)(11,18)(21,23)(22,26)(25,27) );
G=PermutationGroup([[(1,18,11),(2,26,14),(3,7,22),(4,12,10),(5,8,25),(6,24,19),(9,13,15),(16,27,17),(20,21,23)], [(1,3,2),(4,15,23),(5,24,16),(6,17,25),(7,26,18),(8,19,27),(9,20,12),(10,13,21),(11,22,14)], [(1,17,10),(2,6,21),(3,25,13),(4,7,24),(5,23,18),(8,12,14),(9,11,19),(15,26,16),(20,22,27)], [(2,3),(4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27)], [(2,3),(4,13),(5,16),(6,19),(7,14),(8,17),(9,12),(10,15),(11,18),(21,23),(22,26),(25,27)]])
G:=TransitiveGroup(27,141);
Matrix representation of He3⋊SD16 ►in GL6(ℤ)
0 | 1 | 1 | 0 | -1 | 1 |
-2 | 0 | -1 | 0 | -2 | -1 |
2 | 0 | 1 | 1 | 1 | 2 |
1 | 0 | 0 | 0 | -1 | 1 |
-1 | -1 | -1 | -1 | 0 | -2 |
0 | 0 | 0 | 0 | 2 | -1 |
0 | -1 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
-1 | 0 | -1 | 0 | -1 | -1 |
0 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -2 | -2 | -1 | -1 | -2 |
1 | -1 | 0 | -1 | 1 | -1 |
0 | 1 | 1 | 0 | 0 | 1 |
-1 | 1 | 1 | 1 | 0 | 1 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 1 | -1 |
-1 | -1 | -2 | -1 | -1 | -2 |
-1 | 0 | 0 | 0 | -1 | 0 |
1 | 1 | 2 | 0 | 0 | 2 |
1 | 1 | 2 | 0 | 2 | 1 |
0 | 0 | 0 | -1 | 1 | -1 |
2 | 0 | 1 | 1 | 1 | 2 |
1 | 0 | 1 | 1 | 2 | 1 |
-1 | 0 | -1 | 0 | -1 | -1 |
-2 | -1 | -2 | -1 | -3 | -2 |
G:=sub<GL(6,Integers())| [0,-2,2,1,-1,0,1,0,0,0,-1,0,1,-1,1,0,-1,0,0,0,1,0,-1,0,-1,-2,1,-1,0,2,1,-1,2,1,-2,-1],[0,1,0,0,-1,0,-1,-1,0,0,0,1,0,0,0,1,-1,0,0,0,-1,-1,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0],[1,0,-1,1,0,-1,0,1,-2,-1,1,1,0,0,-2,0,1,1,0,0,-1,-1,0,1,0,0,-1,1,0,0,0,0,-2,-1,1,1],[0,0,0,-1,-1,1,0,0,0,-1,0,1,-1,0,0,-2,0,2,1,1,-1,-1,0,0,0,0,1,-1,-1,0,0,0,-1,-2,0,2],[1,0,2,1,-1,-2,1,0,0,0,0,-1,2,0,1,1,-1,-2,0,-1,1,1,0,-1,2,1,1,2,-1,-3,1,-1,2,1,-1,-2] >;
He3⋊SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes {\rm SD}_{16}
% in TeX
G:=Group("He3:SD16");
// GroupNames label
G:=SmallGroup(432,520);
// by ID
G=gap.SmallGroup(432,520);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,197,135,58,1684,4491,998,1425,4709,2028,2875,1286,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=c,e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=a*b^-1*c,e*c*e=a^-1*b^-1*c,e*d*e=d^3>;
// generators/relations
Export
Subgroup lattice of He3⋊SD16 in TeX
Character table of He3⋊SD16 in TeX