metabelian, soluble, monomial, A-group
Aliases: F9, AGL1(𝔽9), C32⋊C8, C3⋊S3.C4, C32⋊C4.1C2, SmallGroup(72,39)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C32⋊C4 — F9 |
C32 — F9 |
Generators and relations for F9
G = < a,b,c | a3=b3=c8=1, cac-1=ab=ba, cbc-1=a >
Character table of F9
class | 1 | 2 | 3 | 4A | 4B | 8A | 8B | 8C | 8D | |
size | 1 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ4 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ5 | 1 | -1 | 1 | -i | i | ζ85 | ζ8 | ζ87 | ζ83 | linear of order 8 |
ρ6 | 1 | -1 | 1 | i | -i | ζ87 | ζ83 | ζ85 | ζ8 | linear of order 8 |
ρ7 | 1 | -1 | 1 | i | -i | ζ83 | ζ87 | ζ8 | ζ85 | linear of order 8 |
ρ8 | 1 | -1 | 1 | -i | i | ζ8 | ζ85 | ζ83 | ζ87 | linear of order 8 |
ρ9 | 8 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 5 9)(2 7 8)(3 6 4)
(1 6 2)(3 8 9)(4 7 5)
(2 3 4 5 6 7 8 9)
G:=sub<Sym(9)| (1,5,9)(2,7,8)(3,6,4), (1,6,2)(3,8,9)(4,7,5), (2,3,4,5,6,7,8,9)>;
G:=Group( (1,5,9)(2,7,8)(3,6,4), (1,6,2)(3,8,9)(4,7,5), (2,3,4,5,6,7,8,9) );
G=PermutationGroup([[(1,5,9),(2,7,8),(3,6,4)], [(1,6,2),(3,8,9),(4,7,5)], [(2,3,4,5,6,7,8,9)]])
G:=TransitiveGroup(9,15);
(1 12 8)(3 6 10)(4 7 11)
(1 8 12)(2 5 9)(4 7 11)
(1 2 3 4)(5 6 7 8 9 10 11 12)
G:=sub<Sym(12)| (1,12,8)(3,6,10)(4,7,11), (1,8,12)(2,5,9)(4,7,11), (1,2,3,4)(5,6,7,8,9,10,11,12)>;
G:=Group( (1,12,8)(3,6,10)(4,7,11), (1,8,12)(2,5,9)(4,7,11), (1,2,3,4)(5,6,7,8,9,10,11,12) );
G=PermutationGroup([[(1,12,8),(3,6,10),(4,7,11)], [(1,8,12),(2,5,9),(4,7,11)], [(1,2,3,4),(5,6,7,8,9,10,11,12)]])
G:=TransitiveGroup(12,46);
(1 16 12)(2 10 6)(3 9 14)(4 11 13)(5 7 18)(8 17 15)
(1 3 7)(2 17 13)(4 10 15)(5 12 14)(6 8 11)(9 18 16)
(1 2)(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,16,12)(2,10,6)(3,9,14)(4,11,13)(5,7,18)(8,17,15), (1,3,7)(2,17,13)(4,10,15)(5,12,14)(6,8,11)(9,18,16), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18)>;
G:=Group( (1,16,12)(2,10,6)(3,9,14)(4,11,13)(5,7,18)(8,17,15), (1,3,7)(2,17,13)(4,10,15)(5,12,14)(6,8,11)(9,18,16), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,16,12),(2,10,6),(3,9,14),(4,11,13),(5,7,18),(8,17,15)], [(1,3,7),(2,17,13),(4,10,15),(5,12,14),(6,8,11),(9,18,16)], [(1,2),(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,28);
(2 22 10)(3 23 11)(4 12 24)(6 14 18)(7 15 19)(8 20 16)
(1 21 9)(3 23 11)(4 24 12)(5 13 17)(7 15 19)(8 16 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (2,22,10)(3,23,11)(4,12,24)(6,14,18)(7,15,19)(8,20,16), (1,21,9)(3,23,11)(4,24,12)(5,13,17)(7,15,19)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (2,22,10)(3,23,11)(4,12,24)(6,14,18)(7,15,19)(8,20,16), (1,21,9)(3,23,11)(4,24,12)(5,13,17)(7,15,19)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(2,22,10),(3,23,11),(4,12,24),(6,14,18),(7,15,19),(8,20,16)], [(1,21,9),(3,23,11),(4,24,12),(5,13,17),(7,15,19),(8,16,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,81);
F9 is a maximal subgroup of
AΓL1(𝔽9) C3⋊F9 C5⋊2F9 C5⋊F9
F9 is a maximal quotient of C2.F9 He3⋊C8 C3⋊F9 C5⋊2F9 C5⋊F9
action | f(x) | Disc(f) |
---|---|---|
9T15 | x9-72x7+1464x5-960x4-8928x3+13440x2-2064x-2560 | 267·312·56·72·2392·5032 |
12T46 | x12+12x10-19x9+54x8-171x7+169x6-513x5+447x4-573x3+549x2-180x+16 | 216·312·138·1710 |
Matrix representation of F9 ►in GL8(ℤ)
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,Integers())| [0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0],[0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,1,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0,-1,0] >;
F9 in GAP, Magma, Sage, TeX
F_9
% in TeX
G:=Group("F9");
// GroupNames label
G:=SmallGroup(72,39);
// by ID
G=gap.SmallGroup(72,39);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,3,10,26,483,568,93,1404,809,314]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^8=1,c*a*c^-1=a*b=b*a,c*b*c^-1=a>;
// generators/relations
Export