Extensions 1→N→G→Q→1 with N=S3×C6 and Q=S3

Direct product G=N×Q with N=S3×C6 and Q=S3
dρLabelID
S32×C6244S3^2xC6216,170

Semidirect products G=N:Q with N=S3×C6 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1S3 = C3×D6⋊S3φ: S3/C3C2 ⊆ Out S3×C6244(S3xC6):1S3216,121
(S3×C6)⋊2S3 = C3×C3⋊D12φ: S3/C3C2 ⊆ Out S3×C6244(S3xC6):2S3216,122
(S3×C6)⋊3S3 = C336D4φ: S3/C3C2 ⊆ Out S3×C672(S3xC6):3S3216,127
(S3×C6)⋊4S3 = C337D4φ: S3/C3C2 ⊆ Out S3×C636(S3xC6):4S3216,128
(S3×C6)⋊5S3 = C2×S3×C3⋊S3φ: S3/C3C2 ⊆ Out S3×C636(S3xC6):5S3216,171

Non-split extensions G=N.Q with N=S3×C6 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C6).1S3 = S3×Dic9φ: S3/C3C2 ⊆ Out S3×C6724-(S3xC6).1S3216,30
(S3×C6).2S3 = D6⋊D9φ: S3/C3C2 ⊆ Out S3×C6724-(S3xC6).2S3216,31
(S3×C6).3S3 = C9⋊D12φ: S3/C3C2 ⊆ Out S3×C6364+(S3xC6).3S3216,32
(S3×C6).4S3 = C2×S3×D9φ: S3/C3C2 ⊆ Out S3×C6364+(S3xC6).4S3216,101
(S3×C6).5S3 = S3×C3⋊Dic3φ: S3/C3C2 ⊆ Out S3×C672(S3xC6).5S3216,124
(S3×C6).6S3 = C3×S3×Dic3φ: trivial image244(S3xC6).6S3216,119

׿
×
𝔽