Extensions 1→N→G→Q→1 with N=C4xHe3 and Q=C2

Direct product G=NxQ with N=C4xHe3 and Q=C2
dρLabelID
C2xC4xHe372C2xC4xHe3216,74

Semidirect products G=N:Q with N=C4xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xHe3):1C2 = He3:4D4φ: C2/C1C2 ⊆ Out C4xHe3366+(C4xHe3):1C2216,51
(C4xHe3):2C2 = He3:5D4φ: C2/C1C2 ⊆ Out C4xHe3366(C4xHe3):2C2216,68
(C4xHe3):3C2 = C4xC32:C6φ: C2/C1C2 ⊆ Out C4xHe3366(C4xHe3):3C2216,50
(C4xHe3):4C2 = C4xHe3:C2φ: C2/C1C2 ⊆ Out C4xHe3363(C4xHe3):4C2216,67
(C4xHe3):5C2 = D4xHe3φ: C2/C1C2 ⊆ Out C4xHe3366(C4xHe3):5C2216,77

Non-split extensions G=N.Q with N=C4xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xHe3).1C2 = He3:3Q8φ: C2/C1C2 ⊆ Out C4xHe3726-(C4xHe3).1C2216,49
(C4xHe3).2C2 = He3:4Q8φ: C2/C1C2 ⊆ Out C4xHe3726(C4xHe3).2C2216,66
(C4xHe3).3C2 = He3:3C8φ: C2/C1C2 ⊆ Out C4xHe3726(C4xHe3).3C2216,14
(C4xHe3).4C2 = He3:4C8φ: C2/C1C2 ⊆ Out C4xHe3723(C4xHe3).4C2216,17
(C4xHe3).5C2 = Q8xHe3φ: C2/C1C2 ⊆ Out C4xHe3726(C4xHe3).5C2216,80
(C4xHe3).6C2 = C8xHe3φ: trivial image723(C4xHe3).6C2216,19

׿
x
:
Z
F
o
wr
Q
<