Copied to
clipboard

G = C4xHe3:C2order 216 = 23·33

Direct product of C4 and He3:C2

direct product, non-abelian, supersoluble, monomial

Aliases: C4xHe3:C2, (C3xC12):4S3, He3:5(C2xC4), (C4xHe3):4C2, C32:4(C4xS3), (C3xC6).17D6, He3:3C4:4C2, C12.11(C3:S3), (C2xHe3).12C22, C3.2(C4xC3:S3), C6.19(C2xC3:S3), C2.1(C2xHe3:C2), (C2xHe3:C2).3C2, SmallGroup(216,67)

Series: Derived Chief Lower central Upper central

C1C3He3 — C4xHe3:C2
C1C3C32He3C2xHe3C2xHe3:C2 — C4xHe3:C2
He3 — C4xHe3:C2
C1C12

Generators and relations for C4xHe3:C2
 G = < a,b,c,d,e | a4=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, cd=dc, ce=ec, ede=d-1 >

Subgroups: 272 in 88 conjugacy classes, 26 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, C32, Dic3, C12, C12, D6, C2xC6, C3xS3, C3xC6, C4xS3, C2xC12, He3, C3xDic3, C3xC12, S3xC6, He3:C2, C2xHe3, S3xC12, He3:3C4, C4xHe3, C2xHe3:C2, C4xHe3:C2
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, C3:S3, C4xS3, C2xC3:S3, He3:C2, C4xC3:S3, C2xHe3:C2, C4xHe3:C2

Smallest permutation representation of C4xHe3:C2
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 16 7)(2 13 8)(3 14 5)(4 15 6)(9 29 18)(10 30 19)(11 31 20)(12 32 17)(21 27 33)(22 28 34)(23 25 35)(24 26 36)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 11)(6 36 12)(7 33 9)(8 34 10)(13 28 19)(14 25 20)(15 26 17)(16 27 18)
(1 33 27)(2 34 28)(3 35 25)(4 36 26)(5 14 31)(6 15 32)(7 16 29)(8 13 30)(9 18 21)(10 19 22)(11 20 23)(12 17 24)
(1 3)(2 4)(5 16)(6 13)(7 14)(8 15)(9 20)(10 17)(11 18)(12 19)(21 23)(22 24)(25 33)(26 34)(27 35)(28 36)(29 31)(30 32)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,16,7)(2,13,8)(3,14,5)(4,15,6)(9,29,18)(10,30,19)(11,31,20)(12,32,17)(21,27,33)(22,28,34)(23,25,35)(24,26,36), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,11)(6,36,12)(7,33,9)(8,34,10)(13,28,19)(14,25,20)(15,26,17)(16,27,18), (1,33,27)(2,34,28)(3,35,25)(4,36,26)(5,14,31)(6,15,32)(7,16,29)(8,13,30)(9,18,21)(10,19,22)(11,20,23)(12,17,24), (1,3)(2,4)(5,16)(6,13)(7,14)(8,15)(9,20)(10,17)(11,18)(12,19)(21,23)(22,24)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,16,7)(2,13,8)(3,14,5)(4,15,6)(9,29,18)(10,30,19)(11,31,20)(12,32,17)(21,27,33)(22,28,34)(23,25,35)(24,26,36), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,11)(6,36,12)(7,33,9)(8,34,10)(13,28,19)(14,25,20)(15,26,17)(16,27,18), (1,33,27)(2,34,28)(3,35,25)(4,36,26)(5,14,31)(6,15,32)(7,16,29)(8,13,30)(9,18,21)(10,19,22)(11,20,23)(12,17,24), (1,3)(2,4)(5,16)(6,13)(7,14)(8,15)(9,20)(10,17)(11,18)(12,19)(21,23)(22,24)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,16,7),(2,13,8),(3,14,5),(4,15,6),(9,29,18),(10,30,19),(11,31,20),(12,32,17),(21,27,33),(22,28,34),(23,25,35),(24,26,36)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,11),(6,36,12),(7,33,9),(8,34,10),(13,28,19),(14,25,20),(15,26,17),(16,27,18)], [(1,33,27),(2,34,28),(3,35,25),(4,36,26),(5,14,31),(6,15,32),(7,16,29),(8,13,30),(9,18,21),(10,19,22),(11,20,23),(12,17,24)], [(1,3),(2,4),(5,16),(6,13),(7,14),(8,15),(9,20),(10,17),(11,18),(12,19),(21,23),(22,24),(25,33),(26,34),(27,35),(28,36),(29,31),(30,32)]])

C4xHe3:C2 is a maximal subgroup of
C12.89S32  He3:3M4(2)  He3:6M4(2)  He3:2(C2xC8)  He3:1M4(2)  C4:(He3:C4)  C12.84S32  C12.91S32  C12.85S32  C12.86S32  C62.47D6  C62.16D6  He3:5D4:C2
C4xHe3:C2 is a maximal quotient of
He3:6M4(2)  C62.29D6  C62.31D6

40 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D6A6B6C6D6E6F6G6H6I6J12A12B12C12D12E···12L12M12N12O12P
order1222333333444466666666661212121212···1212121212
size11991166661199116666999911116···69999

40 irreducible representations

dim11111222333
type++++++
imageC1C2C2C2C4S3D6C4xS3He3:C2C2xHe3:C2C4xHe3:C2
kernelC4xHe3:C2He3:3C4C4xHe3C2xHe3:C2He3:C2C3xC12C3xC6C32C4C2C1
# reps11114448448

Matrix representation of C4xHe3:C2 in GL3(F13) generated by

500
050
005
,
670
1712
740
,
300
030
003
,
215
8110
8120
,
1610
0121
001
G:=sub<GL(3,GF(13))| [5,0,0,0,5,0,0,0,5],[6,1,7,7,7,4,0,12,0],[3,0,0,0,3,0,0,0,3],[2,8,8,1,11,12,5,0,0],[1,0,0,6,12,0,10,1,1] >;

C4xHe3:C2 in GAP, Magma, Sage, TeX

C_4\times {\rm He}_3\rtimes C_2
% in TeX

G:=Group("C4xHe3:C2");
// GroupNames label

G:=SmallGroup(216,67);
// by ID

G=gap.SmallGroup(216,67);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,31,387,1444,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<