extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×C3⋊S3) = S3×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.1(C2xC3:S3) | 216,124 |
C6.2(C2×C3⋊S3) = Dic3×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.2(C2xC3:S3) | 216,125 |
C6.3(C2×C3⋊S3) = C33⋊8(C2×C4) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 36 | | C6.3(C2xC3:S3) | 216,126 |
C6.4(C2×C3⋊S3) = C33⋊6D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.4(C2xC3:S3) | 216,127 |
C6.5(C2×C3⋊S3) = C33⋊7D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 36 | | C6.5(C2xC3:S3) | 216,128 |
C6.6(C2×C3⋊S3) = C33⋊8D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 36 | | C6.6(C2xC3:S3) | 216,129 |
C6.7(C2×C3⋊S3) = C33⋊4Q8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.7(C2xC3:S3) | 216,130 |
C6.8(C2×C3⋊S3) = C12.D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 216 | | C6.8(C2xC3:S3) | 216,63 |
C6.9(C2×C3⋊S3) = C4×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.9(C2xC3:S3) | 216,64 |
C6.10(C2×C3⋊S3) = C36⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.10(C2xC3:S3) | 216,65 |
C6.11(C2×C3⋊S3) = C2×C9⋊Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 216 | | C6.11(C2xC3:S3) | 216,69 |
C6.12(C2×C3⋊S3) = C6.D18 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.12(C2xC3:S3) | 216,70 |
C6.13(C2×C3⋊S3) = C22×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.13(C2xC3:S3) | 216,112 |
C6.14(C2×C3⋊S3) = C33⋊8Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 216 | | C6.14(C2xC3:S3) | 216,145 |
C6.15(C2×C3⋊S3) = C4×C33⋊C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.15(C2xC3:S3) | 216,146 |
C6.16(C2×C3⋊S3) = C33⋊12D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.16(C2xC3:S3) | 216,147 |
C6.17(C2×C3⋊S3) = C2×C33⋊5C4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 216 | | C6.17(C2xC3:S3) | 216,148 |
C6.18(C2×C3⋊S3) = C33⋊15D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C6 | 108 | | C6.18(C2xC3:S3) | 216,149 |
C6.19(C2×C3⋊S3) = C4×He3⋊C2 | central extension (φ=1) | 36 | 3 | C6.19(C2xC3:S3) | 216,67 |
C6.20(C2×C3⋊S3) = C2×He3⋊3C4 | central extension (φ=1) | 72 | | C6.20(C2xC3:S3) | 216,71 |
C6.21(C2×C3⋊S3) = C22×He3⋊C2 | central extension (φ=1) | 36 | | C6.21(C2xC3:S3) | 216,113 |
C6.22(C2×C3⋊S3) = C3×C32⋊4Q8 | central extension (φ=1) | 72 | | C6.22(C2xC3:S3) | 216,140 |
C6.23(C2×C3⋊S3) = C12×C3⋊S3 | central extension (φ=1) | 72 | | C6.23(C2xC3:S3) | 216,141 |
C6.24(C2×C3⋊S3) = C3×C12⋊S3 | central extension (φ=1) | 72 | | C6.24(C2xC3:S3) | 216,142 |
C6.25(C2×C3⋊S3) = C6×C3⋊Dic3 | central extension (φ=1) | 72 | | C6.25(C2xC3:S3) | 216,143 |
C6.26(C2×C3⋊S3) = C3×C32⋊7D4 | central extension (φ=1) | 36 | | C6.26(C2xC3:S3) | 216,144 |
C6.27(C2×C3⋊S3) = He3⋊4Q8 | central stem extension (φ=1) | 72 | 6 | C6.27(C2xC3:S3) | 216,66 |
C6.28(C2×C3⋊S3) = He3⋊5D4 | central stem extension (φ=1) | 36 | 6 | C6.28(C2xC3:S3) | 216,68 |
C6.29(C2×C3⋊S3) = He3⋊7D4 | central stem extension (φ=1) | 36 | 6 | C6.29(C2xC3:S3) | 216,72 |