Extensions 1→N→G→Q→1 with N=C6×D9 and Q=C2

Direct product G=N×Q with N=C6×D9 and Q=C2
dρLabelID
C2×C6×D972C2xC6xD9216,108

Semidirect products G=N:Q with N=C6×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D9)⋊1C2 = C3⋊D36φ: C2/C1C2 ⊆ Out C6×D9364+(C6xD9):1C2216,29
(C6×D9)⋊2C2 = D6⋊D9φ: C2/C1C2 ⊆ Out C6×D9724-(C6xD9):2C2216,31
(C6×D9)⋊3C2 = C3×D36φ: C2/C1C2 ⊆ Out C6×D9722(C6xD9):3C2216,46
(C6×D9)⋊4C2 = C3×C9⋊D4φ: C2/C1C2 ⊆ Out C6×D9362(C6xD9):4C2216,57
(C6×D9)⋊5C2 = C2×S3×D9φ: C2/C1C2 ⊆ Out C6×D9364+(C6xD9):5C2216,101

Non-split extensions G=N.Q with N=C6×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D9).C2 = Dic3×D9φ: C2/C1C2 ⊆ Out C6×D9724-(C6xD9).C2216,27
(C6×D9).2C2 = C12×D9φ: trivial image722(C6xD9).2C2216,45

׿
×
𝔽