Extensions 1→N→G→Q→1 with N=C3 and Q=C3⋊D12

Direct product G=N×Q with N=C3 and Q=C3⋊D12
dρLabelID
C3×C3⋊D12244C3xC3:D12216,122

Semidirect products G=N:Q with N=C3 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C31(C3⋊D12) = C338D4φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C336C3:1(C3:D12)216,129
C32(C3⋊D12) = C337D4φ: C3⋊D12/S3×C6C2 ⊆ Aut C336C3:2(C3:D12)216,128
C33(C3⋊D12) = C339D4φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C3244C3:3(C3:D12)216,132

Non-split extensions G=N.Q with N=C3 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C3.1(C3⋊D12) = C3⋊D36φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C3364+C3.1(C3:D12)216,29
C3.2(C3⋊D12) = C9⋊D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C3364+C3.2(C3:D12)216,32
C3.3(C3⋊D12) = He33D4φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C3366C3.3(C3:D12)216,37

׿
×
𝔽