extension | φ:Q→Aut N | d | ρ | Label | ID |
C26.1(C2×C4) = D13⋊C8 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 104 | 4 | C26.1(C2xC4) | 208,28 |
C26.2(C2×C4) = C52.C4 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 104 | 4 | C26.2(C2xC4) | 208,29 |
C26.3(C2×C4) = C4×C13⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 52 | 4 | C26.3(C2xC4) | 208,30 |
C26.4(C2×C4) = C52⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 52 | 4 | C26.4(C2xC4) | 208,31 |
C26.5(C2×C4) = C2×C13⋊C8 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 208 | | C26.5(C2xC4) | 208,32 |
C26.6(C2×C4) = C13⋊M4(2) | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 104 | 4- | C26.6(C2xC4) | 208,33 |
C26.7(C2×C4) = D13.D4 | φ: C2×C4/C2 → C4 ⊆ Aut C26 | 52 | 4+ | C26.7(C2xC4) | 208,34 |
C26.8(C2×C4) = C8×D13 | φ: C2×C4/C4 → C2 ⊆ Aut C26 | 104 | 2 | C26.8(C2xC4) | 208,4 |
C26.9(C2×C4) = C8⋊D13 | φ: C2×C4/C4 → C2 ⊆ Aut C26 | 104 | 2 | C26.9(C2xC4) | 208,5 |
C26.10(C2×C4) = C4×Dic13 | φ: C2×C4/C4 → C2 ⊆ Aut C26 | 208 | | C26.10(C2xC4) | 208,11 |
C26.11(C2×C4) = C26.D4 | φ: C2×C4/C4 → C2 ⊆ Aut C26 | 208 | | C26.11(C2xC4) | 208,12 |
C26.12(C2×C4) = D26⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C26 | 104 | | C26.12(C2xC4) | 208,14 |
C26.13(C2×C4) = C2×C13⋊2C8 | φ: C2×C4/C22 → C2 ⊆ Aut C26 | 208 | | C26.13(C2xC4) | 208,9 |
C26.14(C2×C4) = C52.4C4 | φ: C2×C4/C22 → C2 ⊆ Aut C26 | 104 | 2 | C26.14(C2xC4) | 208,10 |
C26.15(C2×C4) = C52⋊3C4 | φ: C2×C4/C22 → C2 ⊆ Aut C26 | 208 | | C26.15(C2xC4) | 208,13 |
C26.16(C2×C4) = C23.D13 | φ: C2×C4/C22 → C2 ⊆ Aut C26 | 104 | | C26.16(C2xC4) | 208,19 |
C26.17(C2×C4) = C13×C22⋊C4 | central extension (φ=1) | 104 | | C26.17(C2xC4) | 208,21 |
C26.18(C2×C4) = C13×C4⋊C4 | central extension (φ=1) | 208 | | C26.18(C2xC4) | 208,22 |
C26.19(C2×C4) = C13×M4(2) | central extension (φ=1) | 104 | 2 | C26.19(C2xC4) | 208,24 |