metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D26⋊1C4, C26.6D4, C2.2D52, C22.6D26, (C2×C52)⋊1C2, (C2×C4)⋊1D13, C2.5(C4×D13), C13⋊2(C22⋊C4), C26.12(C2×C4), (C2×Dic13)⋊1C2, C2.2(C13⋊D4), (C2×C26).6C22, (C22×D13).1C2, SmallGroup(208,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D26⋊C4
G = < a,b,c | a26=b2=c4=1, bab=a-1, ac=ca, cbc-1=a13b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 45)(53 84)(54 83)(55 82)(56 81)(57 80)(58 79)(59 104)(60 103)(61 102)(62 101)(63 100)(64 99)(65 98)(66 97)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)
(1 91 45 60)(2 92 46 61)(3 93 47 62)(4 94 48 63)(5 95 49 64)(6 96 50 65)(7 97 51 66)(8 98 52 67)(9 99 27 68)(10 100 28 69)(11 101 29 70)(12 102 30 71)(13 103 31 72)(14 104 32 73)(15 79 33 74)(16 80 34 75)(17 81 35 76)(18 82 36 77)(19 83 37 78)(20 84 38 53)(21 85 39 54)(22 86 40 55)(23 87 41 56)(24 88 42 57)(25 89 43 58)(26 90 44 59)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85), (1,91,45,60)(2,92,46,61)(3,93,47,62)(4,94,48,63)(5,95,49,64)(6,96,50,65)(7,97,51,66)(8,98,52,67)(9,99,27,68)(10,100,28,69)(11,101,29,70)(12,102,30,71)(13,103,31,72)(14,104,32,73)(15,79,33,74)(16,80,34,75)(17,81,35,76)(18,82,36,77)(19,83,37,78)(20,84,38,53)(21,85,39,54)(22,86,40,55)(23,87,41,56)(24,88,42,57)(25,89,43,58)(26,90,44,59)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85), (1,91,45,60)(2,92,46,61)(3,93,47,62)(4,94,48,63)(5,95,49,64)(6,96,50,65)(7,97,51,66)(8,98,52,67)(9,99,27,68)(10,100,28,69)(11,101,29,70)(12,102,30,71)(13,103,31,72)(14,104,32,73)(15,79,33,74)(16,80,34,75)(17,81,35,76)(18,82,36,77)(19,83,37,78)(20,84,38,53)(21,85,39,54)(22,86,40,55)(23,87,41,56)(24,88,42,57)(25,89,43,58)(26,90,44,59) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,45),(53,84),(54,83),(55,82),(56,81),(57,80),(58,79),(59,104),(60,103),(61,102),(62,101),(63,100),(64,99),(65,98),(66,97),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85)], [(1,91,45,60),(2,92,46,61),(3,93,47,62),(4,94,48,63),(5,95,49,64),(6,96,50,65),(7,97,51,66),(8,98,52,67),(9,99,27,68),(10,100,28,69),(11,101,29,70),(12,102,30,71),(13,103,31,72),(14,104,32,73),(15,79,33,74),(16,80,34,75),(17,81,35,76),(18,82,36,77),(19,83,37,78),(20,84,38,53),(21,85,39,54),(22,86,40,55),(23,87,41,56),(24,88,42,57),(25,89,43,58),(26,90,44,59)]])
D26⋊C4 is a maximal subgroup of
C42⋊D13 C4×D52 C4.D52 C42⋊2D13 C22⋊C4×D13 Dic13⋊4D4 C22⋊D52 D26.12D4 D26⋊D4 C23.6D26 C22.D52 C4⋊C4⋊7D13 D52⋊8C4 D26.13D4 C4⋊2D52 D26⋊Q8 D26⋊2Q8 C4⋊C4⋊D13 C4×C13⋊D4 C23.23D26 C52⋊7D4 C23⋊D26 Dic13⋊D4 D26⋊3Q8 C52.23D4
D26⋊C4 is a maximal quotient of
D52⋊4C4 C22.2D52 D52⋊6C4 C26.Q16 C52.44D4 D26⋊1C8 D52⋊5C4 C52.46D4 C4.12D52 D52⋊7C4 C26.10C42
58 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 13A | ··· | 13F | 26A | ··· | 26R | 52A | ··· | 52X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
| size | 1 | 1 | 1 | 1 | 26 | 26 | 2 | 2 | 26 | 26 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
58 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | |||
| image | C1 | C2 | C2 | C2 | C4 | D4 | D13 | D26 | C4×D13 | D52 | C13⋊D4 |
| kernel | D26⋊C4 | C2×Dic13 | C2×C52 | C22×D13 | D26 | C26 | C2×C4 | C22 | C2 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 4 | 2 | 6 | 6 | 12 | 12 | 12 |
Matrix representation of D26⋊C4 ►in GL3(𝔽53) generated by
| 1 | 0 | 0 |
| 0 | 15 | 2 |
| 0 | 10 | 12 |
| 1 | 0 | 0 |
| 0 | 13 | 41 |
| 0 | 14 | 40 |
| 23 | 0 | 0 |
| 0 | 26 | 17 |
| 0 | 32 | 27 |
G:=sub<GL(3,GF(53))| [1,0,0,0,15,10,0,2,12],[1,0,0,0,13,14,0,41,40],[23,0,0,0,26,32,0,17,27] >;
D26⋊C4 in GAP, Magma, Sage, TeX
D_{26}\rtimes C_4 % in TeX
G:=Group("D26:C4"); // GroupNames label
G:=SmallGroup(208,14);
// by ID
G=gap.SmallGroup(208,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-13,101,26,4804]);
// Polycyclic
G:=Group<a,b,c|a^26=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^13*b>;
// generators/relations
Export