Extensions 1→N→G→Q→1 with N=C3 and Q=S3×A4

Direct product G=N×Q with N=C3 and Q=S3×A4
dρLabelID
C3×S3×A4246C3xS3xA4216,166

Semidirect products G=N:Q with N=C3 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×A4) = A4×C3⋊S3φ: S3×A4/C3×A4C2 ⊆ Aut C336C3:(S3xA4)216,167

Non-split extensions G=N.Q with N=C3 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C3.1(S3×A4) = D9⋊A4φ: S3×A4/C3×A4C2 ⊆ Aut C3366+C3.1(S3xA4)216,96
C3.2(S3×A4) = A4×D9φ: S3×A4/C3×A4C2 ⊆ Aut C3366+C3.2(S3xA4)216,97
C3.3(S3×A4) = C62⋊C6φ: S3×A4/C3×A4C2 ⊆ Aut C3186+C3.3(S3xA4)216,99
C3.4(S3×A4) = S3×C3.A4central extension (φ=1)366C3.4(S3xA4)216,98

׿
×
𝔽