direct product, metabelian, soluble, monomial, A-group
Aliases: A4×D9, C9⋊3(C2×A4), (C9×A4)⋊3C2, (C2×C18)⋊2C6, C3.2(S3×A4), (C3×A4).3S3, C22⋊2(C3×D9), (C22×D9)⋊2C3, (C2×C6).6(C3×S3), SmallGroup(216,97)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C18 — A4×D9 |
Generators and relations for A4×D9
G = < a,b,c,d,e | a2=b2=c3=d9=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Character table of A4×D9
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 18A | 18B | 18C | |
size | 1 | 3 | 9 | 27 | 2 | 4 | 4 | 8 | 8 | 6 | 36 | 36 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ9 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 2 | 0 | 0 | -1 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ12 | 2 | 2 | 0 | 0 | 2 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 2 | 0 | 0 | -1 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ13 | 2 | 2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ95 | ζ92+ζ9 | ζ98+ζ97 | ζ98+ζ94 | ζ95+ζ9 | ζ94+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | complex lifted from C3×D9 |
ρ14 | 2 | 2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ97 | ζ95+ζ9 | ζ98+ζ94 | ζ94+ζ92 | ζ97+ζ95 | ζ92+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | complex lifted from C3×D9 |
ρ15 | 2 | 2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ9 | ζ94+ζ92 | ζ97+ζ95 | ζ98+ζ97 | ζ92+ζ9 | ζ98+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | complex lifted from C3×D9 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ94 | ζ97+ζ95 | ζ94+ζ92 | ζ92+ζ9 | ζ98+ζ97 | ζ95+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | complex lifted from C3×D9 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ92+ζ9 | ζ98+ζ94 | ζ95+ζ9 | ζ97+ζ95 | ζ94+ζ92 | ζ98+ζ97 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | complex lifted from C3×D9 |
ρ18 | 2 | 2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ94+ζ92 | ζ98+ζ97 | ζ92+ζ9 | ζ95+ζ9 | ζ98+ζ94 | ζ97+ζ95 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | complex lifted from C3×D9 |
ρ19 | 3 | -1 | -3 | 1 | 3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from C2×A4 |
ρ20 | 3 | -1 | 3 | -1 | 3 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ21 | 6 | -2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | orthogonal lifted from S3×A4 |
ρ22 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal faithful |
ρ23 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal faithful |
ρ24 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal faithful |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(10 19 28)(11 20 29)(12 21 30)(13 22 31)(14 23 32)(15 24 33)(16 25 34)(17 26 35)(18 27 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)
G:=sub<Sym(36)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (10,19,28)(11,20,29)(12,21,30)(13,22,31)(14,23,32)(15,24,33)(16,25,34)(17,26,35)(18,27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (10,19,28)(11,20,29)(12,21,30)(13,22,31)(14,23,32)(15,24,33)(16,25,34)(17,26,35)(18,27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(10,19,28),(11,20,29),(12,21,30),(13,22,31),(14,23,32),(15,24,33),(16,25,34),(17,26,35),(18,27,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32)]])
A4×D9 is a maximal quotient of Dic9.2A4
Matrix representation of A4×D9 ►in GL5(𝔽19)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 |
0 | 0 | 18 | 0 | 1 |
0 | 0 | 18 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 18 | 0 |
0 | 0 | 1 | 18 | 0 |
7 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
12 | 17 | 0 | 0 | 0 |
2 | 14 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
2 | 14 | 0 | 0 | 0 |
12 | 17 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,18,18,18,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,18,18,18,0,0,1,0,0],[7,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[12,2,0,0,0,17,14,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[2,12,0,0,0,14,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4×D9 in GAP, Magma, Sage, TeX
A_4\times D_9
% in TeX
G:=Group("A4xD9");
// GroupNames label
G:=SmallGroup(216,97);
// by ID
G=gap.SmallGroup(216,97);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-3,-3,170,81,3604,208,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^9=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of A4×D9 in TeX
Character table of A4×D9 in TeX