Copied to
clipboard

G = A4×D9order 216 = 23·33

Direct product of A4 and D9

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D9, C93(C2×A4), (C9×A4)⋊3C2, (C2×C18)⋊2C6, C3.2(S3×A4), (C3×A4).3S3, C222(C3×D9), (C22×D9)⋊2C3, (C2×C6).6(C3×S3), SmallGroup(216,97)

Series: Derived Chief Lower central Upper central

C1C2×C18 — A4×D9
C1C3C9C2×C18C9×A4 — A4×D9
C2×C18 — A4×D9
C1

Generators and relations for A4×D9
 G = < a,b,c,d,e | a2=b2=c3=d9=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
9C2
27C2
4C3
8C3
27C22
27C22
3C6
3S3
9S3
36C6
4C32
8C9
9C23
2A4
9D6
9D6
3D9
3C18
12C3×S3
4C3×C9
3C22×S3
9C2×A4
2C3.A4
3D18
3D18
4C3×D9
3S3×A4

Character table of A4×D9

 class 12A2B2C3A3B3C3D3E6A6B6C9A9B9C9D9E9F9G9H9I18A18B18C
 size 139272448863636222888888666
ρ1111111111111111111111111    trivial
ρ211-1-1111111-1-1111111111111    linear of order 2
ρ311111ζ3ζ32ζ3ζ321ζ3ζ32111ζ3ζ3ζ32ζ3ζ32ζ32111    linear of order 3
ρ411-1-11ζ32ζ3ζ32ζ31ζ6ζ65111ζ32ζ32ζ3ζ32ζ3ζ3111    linear of order 6
ρ511111ζ32ζ3ζ32ζ31ζ32ζ3111ζ32ζ32ζ3ζ32ζ3ζ3111    linear of order 3
ρ611-1-11ζ3ζ32ζ3ζ321ζ65ζ6111ζ3ζ3ζ32ζ3ζ32ζ32111    linear of order 6
ρ7220022222200-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ82200-122-1-1-100ζ9594ζ989ζ9792ζ989ζ9594ζ9594ζ9792ζ9792ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ92200-122-1-1-100ζ9792ζ9594ζ989ζ9594ζ9792ζ9792ζ989ζ989ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ102200-122-1-1-100ζ989ζ9792ζ9594ζ9792ζ989ζ989ζ9594ζ9594ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1122002-1--3-1+-3-1--3-1+-3200-1-1-1ζ6ζ6ζ65ζ6ζ65ζ65-1-1-1    complex lifted from C3×S3
ρ1222002-1+-3-1--3-1+-3-1--3200-1-1-1ζ65ζ65ζ6ζ65ζ6ζ6-1-1-1    complex lifted from C3×S3
ρ132200-1-1--3-1+-3ζ6ζ65-100ζ9594ζ989ζ9792ζ9795ζ929ζ9897ζ9894ζ959ζ9492ζ9792ζ9594ζ989    complex lifted from C3×D9
ρ142200-1-1+-3-1--3ζ65ζ6-100ζ9792ζ9594ζ989ζ9897ζ959ζ9894ζ9492ζ9795ζ929ζ989ζ9792ζ9594    complex lifted from C3×D9
ρ152200-1-1+-3-1--3ζ65ζ6-100ζ989ζ9792ζ9594ζ959ζ9492ζ9795ζ9897ζ929ζ9894ζ9594ζ989ζ9792    complex lifted from C3×D9
ρ162200-1-1--3-1+-3ζ6ζ65-100ζ989ζ9792ζ9594ζ9894ζ9795ζ9492ζ929ζ9897ζ959ζ9594ζ989ζ9792    complex lifted from C3×D9
ρ172200-1-1--3-1+-3ζ6ζ65-100ζ9792ζ9594ζ989ζ929ζ9894ζ959ζ9795ζ9492ζ9897ζ989ζ9792ζ9594    complex lifted from C3×D9
ρ182200-1-1+-3-1--3ζ65ζ6-100ζ9594ζ989ζ9792ζ9492ζ9897ζ929ζ959ζ9894ζ9795ζ9792ζ9594ζ989    complex lifted from C3×D9
ρ193-1-3130000-100333000000-1-1-1    orthogonal lifted from C2×A4
ρ203-13-130000-100333000000-1-1-1    orthogonal lifted from A4
ρ216-20060000-200-3-3-3000000111    orthogonal lifted from S3×A4
ρ226-200-3000010097+3ζ9295+3ζ9498+3ζ900000098997929594    orthogonal faithful
ρ236-200-3000010095+3ζ9498+3ζ997+3ζ9200000097929594989    orthogonal faithful
ρ246-200-3000010098+3ζ997+3ζ9295+3ζ9400000095949899792    orthogonal faithful

Smallest permutation representation of A4×D9
On 36 points
Generators in S36
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(10 19 28)(11 20 29)(12 21 30)(13 22 31)(14 23 32)(15 24 33)(16 25 34)(17 26 35)(18 27 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)

G:=sub<Sym(36)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (10,19,28)(11,20,29)(12,21,30)(13,22,31)(14,23,32)(15,24,33)(16,25,34)(17,26,35)(18,27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (10,19,28)(11,20,29)(12,21,30)(13,22,31)(14,23,32)(15,24,33)(16,25,34)(17,26,35)(18,27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(10,19,28),(11,20,29),(12,21,30),(13,22,31),(14,23,32),(15,24,33),(16,25,34),(17,26,35),(18,27,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32)]])

A4×D9 is a maximal quotient of   Dic9.2A4

Matrix representation of A4×D9 in GL5(𝔽19)

10000
01000
001800
001801
001810
,
10000
01000
000181
000180
001180
,
70000
07000
00001
00100
00010
,
1217000
214000
00100
00010
00001
,
214000
1217000
00100
00010
00001

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,18,18,18,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,18,18,18,0,0,1,0,0],[7,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[12,2,0,0,0,17,14,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[2,12,0,0,0,14,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×D9 in GAP, Magma, Sage, TeX

A_4\times D_9
% in TeX

G:=Group("A4xD9");
// GroupNames label

G:=SmallGroup(216,97);
// by ID

G=gap.SmallGroup(216,97);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-3,-3,170,81,3604,208,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^9=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D9 in TeX
Character table of A4×D9 in TeX

׿
×
𝔽